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ABSTRACT

Human re-identification in non-overlapped cameras has re-
mained a challenging task due to the human pose and illu-
mination variations. Nowadays, surveillance cameras with
high frame rate are capable of capturing several consecutive
frames from each person. Multi-shot images provide richer
information of the target person compared to a single-shot
image. They, however, produce the high cost of informa-
tion redundancy which may degrade the performance of
re-identification systems. In this paper, we propose a novel
framework that combines sparse coding and manifold con-
straints to extract discriminative information from multi-shot
images of one person for person re-identification across a
set of non-overlapped surveillance cameras. The evaluation
over two standard multi-shot datasets shows very competitive
accuracy of our framework against the state-of-the-art.

Index Terms— Person Re-identification, Sparse Repre-
sentation, Manifold Constraint

1. INTRODUCTION

Person re-identification is the problem of recognizing an
individual in images captured by a camera (or cameras),
given his/her images provided by other non-overlapping cam-
era(s) [1]. This is a very challenging task because of low
resolution images, occlusions, varying poses, clutter back-
ground and uncontrolled illumination. In general, person
re-identification is performed using two different scenarios
of single and multiple-shot approaches. Unlike single-shot
re-identification scenarios [2, 3], in which only one image
of each person is provided by each camera, multiple-shot
scenarios employ multiple images of the same person [4, 5].

The assumption of multiple-shot approaches is that mul-
tiple images of a same person provide richer information for
extracting more discriminative and robust features/descriptors
[6, 7, 8, 9, 10]. Multiple images of the same person taken over
a very short period of time, however, are visually very simi-
lar and, as a result, share a huge amount of redundant infor-
mation which, apart from inefficient complexity and memory
usage, may degrade the discrimination and generalization of

the re-identification system. For instance, it is known that in-
coherent dictionaries improve the performance of sparse rep-
resentation [11]. If the images are all similar this assumption
is broken.

Person re-identification methods are generally divided
into two categories: direct matching and learning-based meth-
ods [4]. Direct matching methods extract descriptors such as
color histogram and HOG from both probe and gallery im-
ages and examine the similarity between descriptors using
statistical measures such as Bhattacharyya distance, l2-norm
and chi-square for image matching [6, 7, 12, 8]. Since direct
matching is performed between a single probe image and
a single query image, these approaches are not capable of
handling multi-shot images.

In learning-based method, on the other hand, a set of
training images for each individual is used to train a person-
specific classifier. The idea is that the information in training
images can be generalized to unseen test samples. Dictionary
learning and sparse coding were successfully used for this
purpose [9, 10]. Despite recent success of learning-based
techniques, they still suffer from the lack of adequate training
samples (for each person) and information redundancy of
visually very similar training images.

In this paper, we propose a human re-identification frame-
work based on sparse representation along with the manifold
learning paradigm. The main objective is to take advantage
from useful extra information that exits in multi-shot sce-
narios by learning a compact representation of each multiple
shot. In order to do so, we rely on manifold learning to per-
form dimensionality reduction [13]. We use this idea to sum-
marize several frames of each person into a descriptor that
is similar to all those frames and carries additional different
information from all of them without redundancies.

Given a test image, we first generate a set of augmented
images using small translations and Brightness Transfer
Function [14]. Then we extract image descriptor from the
original and augmented images and find their sparse repre-
sentation. All the sparse codes that are related to each person
for each camera are used to build a manifold point. This point
is an approximation of the person in low-dimensional feature



space that is used for human re-identification.

2. SPARSE REPRESENTATION CLASSIFICATION

Sparse representation emerged as a powerful tool for sig-
nal and image processing [15]. In this method every n-
dimensional vector b is represented as:

b = Ax (1)

where A is a full-rank n × m matrix called dictionary. The
columns of A are representative training samples called basis
vectors or atoms. The idea of sparsity is that vector b is given
by a linear combination of only few atoms. Therefore, m-
dimensional vector x is sparse and only few of its elements
are non-zero. Number of training samples is assumed to be
high enough to span the entire sample space. This means that
the dictionary A is over-complete (m > n) with the num-
ber of basis vectors greater than the dimensionality of input
vector b. Given the dictionary A and input vector b, the opti-
mization problem estimating a sparse vector x is called Lasso
regression, represented as:

x∗ = argmin
x
‖b−Ax‖22 + λ ‖x‖1 (2)

where the l1-norm forces the sparsity on x, l2-norm mini-
mizes the reconstruction error and λ controls the tradeoff be-
tween those two terms.

Sparse representation is naturally discriminative. It se-
lects only basis vectors that most compactly represent a sig-
nal and therefore is useful for classification. However if data
is strongly redundant, sparsity assumption is weaker because
more atoms can describe a single test sample. Decision rule
to classify a new test vector b is obtained based on reconstruc-
tion error of b. Eq. 1 can be rewritten as b =

∑
i(Aixi) where

Ai is a part of dictionary A whose columns are only samples
from class i and xi is a part of vector x whose elements are
related only to class i. The normalized reconstruction error of
b for class i is computed as:

ei =
‖b−Aixi‖2
‖b‖2

, i ∈ {1, ..., C} (3)

where C is the total number of classes. The class (label) i
with minimum error is assigned to the input sample [10].

3. MANIFOLD CONSTRAINT

A manifold is a topological space that locally resembles Eu-
clidean space near each point. The main technique to learn the
manifold is Locally Linear Embedding that states each data
point is expected to be a linear combination of its neighbor-
ing points [13]. If we assume that points/samples are located
on a manifold, the optimization problem in Eq. 2 is extended
by an additional constraint imposing that input sample b is on
a manifold. This is formulated as:

Fig. 1. Schematic diagram for estimating the manifold point

x∗ = argmin
x,b̂
‖b−Ax‖22 + λ ‖x‖1 + σ

∥∥∥b− b̂∥∥∥
1

(4)

where b̂ is the point on the manifold and σ assigns an impor-
tance to manifold constraint. This objective is not easy to be
optimized due to the additional manifold constraint. Zhang
et al. [16] proved that the constraint on input sample can be
transferred to a constraint on the sparse representation of the
sample. Therefore the objective in Eq. 4 can be written as:

x∗ = argmin
x
‖b−Ax‖22 + λ ‖x‖1 + σ′ ‖x− x̂‖1 (5)

where A is a matrix whose columns are training samples, b is
a test sample, x is the sparse representation of b and x̂ is the
sparse representation of a point on the manifold.

In order to estimate the manifold point x̂, we generate
some additional images by applying spatial translation and
brightness transfer function [14] on original image. Then, we
extract feature vectors from these augmented images, b̂i, (i =
1, ...,K), and calculate their sparse representations x̂i using
Eq. 2, with i = 1, ...,K, where K is the number of aug-
mented images. The sparse representation of the original im-
age is also considered as x̂0. The Geodesic distance between
the original image and the ith augmented images is defined
as ŵi = ‖x̂i − x̂0‖2 which is used to estimate the manifold
point as x̂ =

∑K
i=1(1 − ŵi)x̂i. This means that similar im-

ages, in terms of their sparse representations, contribute more
to the generation of manifold point. This process is depicted
in Fig. 1. Parameters λ and σ′ in Eq. 5 are empirically set to
0.1 and 0.2, respectively for all experiments.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our method for the task of multi-
shot person re-identification comparing with state-of-the-art
methods. We use the feature extraction proposed by [10] in-
cluding color histograms (i.e., RGB and HS) and Histogram
of Oriented Gradients (HOG) for image representation. Also



Fig. 2. Multi-shot frames selection. Each square is a frame.
Dark squares are random selection and light squares are con-
secutive selections after one random selection.

we use Cumulative Weighted Brightness Transfer Function
(CWBTF) as proposed in [14] to generate augmented images
to form manifold points.

4.1. Datasets

We evaluate our method on two multi-shot datasets: SAIVT-
SOFTBIO [17] and PERSON RE-ID 2011 [18].

SAIVT-SOFTBIO contains images of 152 subjects. Each
person is captured with eight different static cameras in in-
door environment under varying pose, illumination and back-
ground. The number of images for each person in each cam-
era varies from 0 to 240 consecutive frames.

PERSON RE-ID 2011 consists of pedestrians images
from two different static surveillance cameras in outdoor en-
vironment with extreme view-point and illumination changes.
Camera A captures 385 persons with clear background. Cam-
era B, on the other hand, captures 749 persons walking over
a zebra crossing in a street. The first 200 persons appear in
both cameras. Images for both single-shot and multiple-shot
scenarios are provided. We use the multiple-shot scenario,
where the number of images for each person is different and
changes from 5 to 675 consecutive frames.

4.2. Manifold Generation

We use multiple shots of each person and their augmented
images (generated by translations and WCBTF) to form man-
ifold points. We apply our proposed method on 5 Vs. 5 per-
son re-identification and we use four scenarios for selecting
frames from train set (for dictionary learning) and test set (to
form manifold points) as depicted in Fig. 2.

Each manifold point is built using all 5 frames of one per-
son and their augmented images. In the random scenario,
5 frames are randomly selected to capture diversity in the
dataset. We also try three more frame selection strategies
based on consecutive shots: one random frame and its two
consecutive previous and next frames (Consecutive in Fig 2),
one random frame and its two consecutive previous and next
frames with one skipped frame in between (Consecutive Skip
1 in Fig 2), one random frame and its two consecutive pre-
vious and next frames with two skipped frames in between

(Consecutive Skip 2 in Fig 2). Since the number of images
for each person in dataset is different, we choose only those
persons with enough images for our scenarios.

Given five shots of each person, we investigate three dif-
ferent image transformation strategies to generate augmented
images from the original test image. These augmented im-
ages are used to construct the manifold point as represented
in Fig. 1. These strategies are:

1) WCBTF that generates one augmented image from
each test image. Since we select 5 test shots for each per-
son, each manifold point is build based on 5 images with
augmented brightness.

2) Image translation by one pixel in four different direc-
tions (top, down, left and right) that generates four augmented
images from each test image. Therefore, each manifold point
is built using 25 images.

3) The combination of WCBTF and image translation that
first generates five images using WCBTF of the 5 original
shots, and then generates again four additional images by
translating each WCBTF augmented image. As a result, there
are 25 images in total to form the manifold point.

The common tool to evaluate human re-identification per-
formance is the Cumulative Matching Characteristic (CMC)
curve and its Area Under Curve (AUC). This curve repre-
sents correct matching rate as a function of top n ranks.
Fig. 3 shows the result of the proposed approach on SAIVT-
SOFTBIO dataset. CMC curves are plotted for three different
types of manifolds that we mentioned above. In each diagram,
we plot CMC curves for four frame selection scenarios. As
we can see, random frame selection strategy outperforms the
consecutive strategies. Moreover, we observe that the combi-
nation of image translation (Fig. 3 (a)) and brightness transfer
function (Fig. 3 (b)) improves the matching rate and obtains
higher AUC (Fig. 3 (c)).

4.3. Comparison with state-of-the-art

According to the previous experiment, we choose to generate
manifold point using the combination of brightness trans-
fer function and image translation. We run the proposed
method with random frame selection for ten times and com-
pare the average results with state-of-the-art methods. On
PRID dataset we compare with 8 methods including Custom
Pictorial Structures (CPS) [8], Symmetry-Driven Accumu-
lation of Local Features (SDALF) [7], Weighted Brightness
Transfer Function (WBTF) [12], Kernel Canonical Correla-
tion Analysis (KCCA) [22], kernel Local Fisher Discriminant
Analysis (kLFDA) [23], Learning Midlevel Filters (LMF)
[24], regularized Pairwise Constrained Component Analysis
(rPCCA) [23] and RankSVM (RSMV) [3]. The CMC curves
and AUCs respect to different ranks are depicted in Fig. 4. As
we see our proposed method outperforms all other methods.
Only in rank 15 KCCA method shows higher matching rate
than us. But the AUC of our method is higher.
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Fig. 3. CMC curves for different scenarios of frame selection based on manifold generation using (a) translation (b) WCBTF
(c) WCBTF with translation on SAIVT-SOFTBIO (similar views) dataset.

Table 1. Comparison on SAIVT-SoftBio dataset
Dataset Camera 3/8 Camera 5/8
Ranks Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

Fused [17] 36.4 60.3 76.0 87.6 20.0 33.0 50.4 67.8
PFDS [19] 33.2 60.5 74.0 87.2 18.6 32.9 53.0 85.3

RankSVM [20] 32.4 68.4 82.0 92.9 14.9 40.5 57.9 75.0
LFDA [21] 12.2 36.8 54.6 74.9 9.3 27.1 41.2 60.6

Ours 56.9 83.0 87.6 94.7 22.7 41.6 48.6 66.9
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Fig. 4. CMC curves of our method based on translation and
WCBTF manifold in comparison to state-of-the-art methods

On SAIVT dataset we compare with 4 methods including
Fused [17], Pairwise Feature Dissimilarities Space (PFDS)
[19], RankSVM [20] and Local Fisher Discriminant Analysis
(LFDA) [21]. The images in SAIVT dataset are captured with
eight different cameras. Following [17], we select two cam-
eras for training (cameras 3 and 5) and one camera for test-
ing (camera 8). Camera 3 and 8 capture images from similar

view, while the views of camera 5 and camera 8 are dissimilar
and, as a result, images taken by cameras 5 and 8 are affected
by severe posing, illumination and appearance changes [17].
This leads to lower matching rate for camera 5 and 8. The
result of person re-identification for different ranks are shown
in Table 1. In case of camera 3/8 our proposed method per-
forms better than all other methods. Between camera 5 and
8 although our method does not show good performance for
rank 10 and 20, but it outperforms other methods in rank 1
and 5 that are more important.

5. CONCLUSION

In this paper we introduced a novel method for human
re-identification using sparse representation with manifold
constraints. Our method is categorized as a multi-shot re-
identification approach and aims to preserve the discrimina-
tive characteristics of multiple images of a person by applying
a manifold constraint over augmented sparse representations.
We empirically found out that random frames selection and
augmenting them using spatial translations and brightness
transfer function gives the best performance to generate man-
ifold point. The evaluation over SAIVT and PRID datasets
shows the superiority of our approach. For the future work,
we will explore other types of manifold formations.
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