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Abstract

Inferring the motion and shape of non-rigid objects from
images has been widely explored by Non-Rigid Structure
from Motion (NRSfM) algorithms. Despite their promising
results, they often utilize additional constraints about the
camera motion (e.g. temporal order) and the deformation
of the object of interest, which are not always provided in
real-world scenarios. This makes the application of NRSfM
limited to very few deformable objects (e.g. human face and
body). In this paper, we propose the concept of Structure
from Category (SfC) to reconstruct 3D structure of generic
objects solely from images with no shape and motion con-
straint (i.e. prior-less). Similar to the NRSfM approaches,
SfC involves two steps: (i) correspondence, and (ii) inver-
sion. Correspondence determines the location of key points
across images of the same object category. Once estab-
lished, the inverse problem of recovering the 3D structure
from the 2D points is solved over an augmented sparse
shape-space model. We validate our approach experimen-
tally by reconstructing 3D structures of both synthetic and
natural images, and demonstrate the superiority of our ap-
proach to the state-of-the-art low-rank NRSfM approaches.

1. Introduction
Reconstructing the shape and motion of objects from im-

ages is a central goal of computer vision, which is gen-
erally known as Structure from Motion (Sf M) in the vi-
sion literature [1, 16]. Sf M has been broadly explored
for rigid objects whose 3D shape is fixed between im-
ages. However, this is not the case for many objects
in the real world with time-varying shapes, including hu-
man, animal and deformable objects. This has encouraged
the vision community to introduce non-rigid Sf M algo-
rithms [5, 7, 25, 10, 11], assuming that an object’s shape
may vary over the time.

It is, however, well-noted in the literature that non-rigid
Sf M is an inherently ill-posed problem, if arbitrary defor-
mations are allowed. In such case, the solution is not unique
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Figure 1. (top) Structure from Category. The first row shows four
instances drawn from the visual object category “aeroplane”. Each
instance in isolation represents a rigid aeroplane, however, the
space of all 3D shapes describing aeroplane category is non-rigid
(same for chairs and buses). The goal of Sf C is to reconstruct the
3D structure of generic objects with no a priori assumption and
constraint on the object shape and camera motion. 3D shapes of
these samples inferred by Sf C is shown in blue. (bottom) NRSf M,
however, imposes constraints (such as temporal order in this fig-
ure) to deal with its ill-conditioned objective. This limits the ap-
plication of NRSf M for real-world unconstrained situations.

and might be very sensitive to initialization and the noise of
key points correspondence. This has been mainly addressed
by imposing additional constraints on the object shape and
camera motion, which, however, comes at the cost of poor
scalability for larger problems when the number of shape
bases increases [17].

This paper introduces the method of Structure from Cat-
egory (Sf C) to infer 3D structures of images from the same
object category. Sf C is built upon the insight that the shape
space describing an object category (e.g. aeroplane) is in-
herently non-rigid, even though individual instances of the
category may be rigid, Fig. 1 (top). In other words, the
shape of each instance can be modelled as a deformation
from its category’s general shape. Based on this observa-
tion, we frame Sf C through an augmented sparse shape-
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space model that estimates the 3D shape of an object as a
sparse linear combination of a set of rotated shape bases.

The proposed Sf C is a generic and prior-less 3D re-
construction algorithm. Unlike current NRSf M methods
which are mainly limited to very few deformable objects
(e.g. human body and face), Sf C can be generally applied
on any object category, due to the non-rigid assumption of
objects shape space. Moreover, all parameters including
shape bases, sparse coefficients and (scaled) camera mo-
tion are jointly learned though an iterative manner, with no
constraint on camera motion, 3D shape structure, temporal
order and deformation patterns (prior-less). Being generic
and prior-less with no learning procedure in advance offers
robust large scale 3D reconstruction for unseen object im-
ages and categories.

Contribution. In this paper we make the following contri-
butions:

• We introduce the concept of Structure from Category
(Sf C) to infer 3D structure of images from the same
object category with no additional constraint and as-
sumption about the shape space and camera motion.

• We formulate Sf C over an augmented sparse shape-
space model, and we demonstrate that the proposed
Sf C objective can be optimized in an iterative manner
using the Alternating Direction Method of Multipliers
(ADMM) algorithm [4].

• We conduct extensive experiments to evaluate our pro-
posed framework on both synthetic images and chal-
lenging PASCAL3D+ natural images. The results
demonstrate the superior performance of Sf C for the
task of 3D reconstruction, compared to well-know
NRSf M methods.

2. Related Work
The field of computer vision has made significant

progress for inferring 3D shape and camera motion of rigid
scenes/objects over the last three decades, with rigid SfM
algorithms now capable of reconstructing entire cities us-
ing large-scale photo collections [2], and real-time visual
SLAM on embedded and mobile devices [15]. Current
rigid Sf M, however, assumes that the 3D structure of the
object/scene of interest does not change over the time, an
assumption that limits the application of this class of ap-
proaches for deformable objects. This led to the develop-
ment of non-rigid Sf M algorithms were carefully tailored
for elastic objects with time-varying 3D shapes [7, 25, 11].

Despite promising results of these family of approaches,
NRSf M algorithms are inherently ill-conditioned, since the
structure can vary between images, resulting in more vari-
ables than equations. The main focus of existing NRSf M

works has been addressing this drawback by introducing ad-
ditional priors and constraints to make the NRSf M problem
less ambiguous. Notable examples of additional priors in-
clude: basis [21], temporal [3, 17, 25], articulation [13, 18],
and camera motion [10] constraints. These priors, although
useful for making the NRSfM problem tractable, consid-
erably limit its applicability to scenarios where these con-
straints do not hold. For example, many of the aforemen-
tioned priors/constraints do not hold for commonly used ob-
ject recognition datasets such as ImageNet [8] or PASCAL
VOC [9], which contain images taken from disjoint points
in space and time.

The recent work of Dai et al. [7] were devoted to answer
this question: what is the minimal set of constraints/priors
required to find a unique solution to the problem? In this
work, they proposed an approach to NRSf M assuming that
the non-rigid 3D structure could be represented by a linear
subspace of known rank K, with no more prior knowledge
and additional constraint. However, the rank K is bounded
by the number of points and frames, which, in most cases,
may drastically degrade the performance of this work con-
fronting object categories with large intra-class variations.
To address this drawback, Kong and Lucey [11] proposed a
block-sparse coding approach solely assuming that the non-
rigid 3D structure could be represented by an over-complete
dictionary sparsely with no more prior knowledge. Al-
though this work is capable of handling highly deformable
objects, due to the non-convex characteristics of dictionary
learning procedure, it is sensitive to initialization and the
noise of key points detection.

There are few methods developed for 3D reconstruc-
tion of object categories purely from large-scale 2D image
datasets [19, 24]. Vicente et al. [19] proposed a novel strat-
egy for obtaining dense per-object 3D reconstructions us-
ing only ground-truth segmentations and a small set of an-
notated key points. The approach first initializes camera
positions using rigid Sf M, and then applies a novel visual
hull reconstruction method using both the hand-labeled key
points and figure-ground segmentations. This work was
able to successfully infer 3D structures from large-scale
2D image dataset with minimal amounts of hand labelled
ground-truth, however, through a number of simplifying
assumptions that inhibit the future progression of model-
based methods applied to large-scale image sets. The au-
thors initialize the camera estimation using rigid Sf M even
though, as discussed earlier, 3D shapes adhering to the same
object category will, in general, form a non-rigid 3D set.
They also assume that a subset of corresponding key points
across all images within the same object category are man-
ually annotated by “a few clicks per image” [19] in order
to apply rigid Sf M. This is impractical across a dataset con-
taining millions of images in thousands of object categories.

Very recently, Zhou et al. [24] proposed an augmented



sparse shape-space model to estimate the 3D shape of an
object from a single image. They assume that a set of key
points within the query image is annotated, and a huge set
of training shapes (e.g. thousands of annotated 3D CAD
models) describing the 3D structure of the target category
is given to learn a shape dictionary (i.e. set of shape bases).
The shape dictionary together with annotated key points of
the image will be used over the proposed augmented sparse
shape-space model to estimate the object’s 3D shape. Since
the sparse model is non-convex, they utilized the convex re-
laxation of orthogonality constraints to convert the sparse
objective into a convex spectral-norm regularized linear in-
verse problem with globally optimal solution [24]. This
method performs well if adequate amount of training 3D
shapes is available to learn a well-generalized shape dictio-
nary. However, this situation rarely happens especially for
large scale 3D reconstruction of object categories with huge
intra-class and deformation variations.

3. SfC: Formulation
Inspired by the augmented sparse shape-space

model [24], the 3D shape of instance f , Sf ∈ R3×P ,
can be well-approximated as a linear combination of a set
of L rotated 3D shape bases {Bl}Ll=1:

Sf =

L∑
l=1

cflRflBl, (1)

where Bl ∈ R3×P , represented by the location of P key
points in the 3D space, describe the object’s shape space.
Rfl ∈ R3×3 and cfl respectively refer to the rotation ma-
trix and the coefficient of the l-th shape base and the f -th
instance.

Given a set of F instances of the same object category,
Eq(1) can be written as :S1

...
SF

 =

 c11R11 · · · c1LR1L

...
...

...
cF1RF1 · · · cFLRFL


B1

...
BL

 . (2)

The projection of {Sf}Ff=1 into the image plane,
{Wf}Ff=1, is computed by:

W1

...
WF

 =

KS1

...
KSF

+

T1

...
TF


=

 c11KR11 · · · c1LKR1L

...
...

...
cF1KRF1 · · · cFLKRFL


B1

...
BL

+

T1

...
TF

 ,
(3)

where we denote translation by Tf , and projection matrix
by K. Wf ∈ R2×P contains the 2D locations of P key
points projected into the image plane. We consider weak-
perspective cameras, which is a reasonable assumption for
objects whose variation in depth is small compared to their

distance from the camera, i.e. K =

[
1 0 0
0 1 0

]
.

Denoting Mfl = cflKRfl, Eq(3) can be written as:W1

...
WF

 =

M11 · · · M1L

...
...

...
MF1 · · · MFL


B1

...
BL

+

T1

...
TF

 (4)

and more concisely in the matrix form as,

W = MB + T (5)

The goal of Sf C is to jointly compute M (projected ro-
tation matrix), B (shape bases), and T (translation), using
W (location of corresponding key points in a set of 2D im-
ages). This is performed by minimizing the projection error
subject to the scaled orthogonality constraint on each Mfl

and the sparsity constraint on the number of shape bases
activated for each instance, which is framed as:

min
M,B,T

1

2

∥∥∥Γ� (MB + T
)
−W

∥∥∥2
F
+ λ‖C‖1

s.t. MflM
T
fl = c2flI2, f = 1, ..., F, l = 1, ..., L,

‖Bl‖F = 1, f = 1, ..., F,
(6)

where C = [cfl] and ‖C‖1 computes the summation of `1-
norm of each row in C. ‖.‖F denotes the Frobenius norm
of a matrix, and Γ is a binary matrix that encodes the visi-
bility (1) and occlusion (0) of each key point. The objective
in Eq(6) is non-convex due to the multiplication of M and
B and the orthogonality constraint on each Mfl. To make
the problem more convex, we utilize the relaxation strategy
proposed by Zhou et al. [24] that eliminates the orthogonal-
ity constraint by replacing it with a spectral norm regular-
ization. In such case, Eq(6) is relaxed as:

min
M,B,T

1

2

∥∥∥Γ� (MB + T
)
−W

∥∥∥2
F
+ λ

∑
l,f

‖Mfl‖2

s.t. ‖Bl‖F = 1, l = 1, ..., L,
(7)

where ‖.‖2 here is the spectral norm of a matrix. The Alter-
nating Direction Method of Multipliers (ADMM) [4] will
be utilized to solve the objective in Eq(7).

4. SfC: Optimization
Our proposed approach for solving Eq(7) involves the

introduction of two auxiliary variables Z and A. In this
case, Eq(7) can be identically expressed as:



min
M,B,T,Z,A

1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2
F
+ λ

∑
f,l

‖Mfl‖2

s.t. M = Z, A = B,

‖Al‖F = 1, l = 1, ..., L.
(8)

The augmented Lagrangian of Eq(8) is formulated as:

L(M,Z,B,A,T,Λ,Π) =
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2
F

+ λ
∑
f,l

‖Mfl‖2 +
µ

2

∥∥∥M− Z
∥∥∥2
F
+
ρ

2

∥∥∥A−B
∥∥∥2
F

+
〈
Λ,M− Z

〉
F
+
〈
Π,A−B

〉
F

s.t. ‖Al‖F = 1, l = 1, ..., L,
(9)

where Π,Λ are Lagrangian multipliers, and µ, ρ are penalty
factors to control the convergence behavior, and < ·, · >F
is Frobenius product of two matrices.

Particularly, we utilize the Alternating Direction Method
of Multipliers (ADMM) to optimize Eq(9). ADMM decom-
poses an objective into several sub-problems, and iteratively
solves them till convergence occurs [4]. We detail each of
the sub-problem as follows.

Sub-problem M:

M∗ = argminL(M;Z,B,A,T,Λ,Π)

= argminλ
∑
f,l

‖Mfl‖2 +
µ

2

∥∥∥M− Z
∥∥∥2
F
+
〈
Λ,M− Z

〉
F

(10)
Following [24], each Mfl can be computed by using

soft-thresholding:

M∗
fl = Dλ/µ

(
Zfl −

1

µ
Λfl

)
(11)

Sub-problem Z:

Z∗ =argmin L(Z;M,B,A,T,Λ,Π)

= argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2
F

+
µ

2

∥∥∥M− Z
∥∥∥2
F
+
〈
Λ,M− Z

〉
F

(12)

Z∗ is updated iteratively by gradient descent several
times, where the gradient is

(
Γ�Γ�

(
ZB+T

)
−W

)
BT−

Λ + µ(Z−M). If Γ is all ones (all key points are visible),
we can compute Z∗ easily by pseudo-inverse:

Z∗ =
(
BBT + µI

)†((
W −T

)
BT + Λ + µM

)
(13)

Sub-problem B:

B∗ = argmin L(B;M,Z,A,T,Λ,Π)

= argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2
F

+
〈
Π,A−B

〉
F
+
ρ

2

∥∥∥A−B
∥∥∥2
F

(14)

Each column of B, corresponded to each key point p, can
be independently optimized as:

B∗p = argmin
1

2

∥∥∥diag (Γp)ZBp + Γp �Tp −Wp

∥∥∥2
2

+
〈
Πp,Ap −Bp

〉
F
+
ρ

2

∥∥∥Ap −Bp

∥∥∥2
2

(15)
We utilized a gradient descent solver to optimize Eq(15)
when ρ is small (Eq(15) is poorly conditioned). Once ρ be-
comes big enough, we solve Bp directly using a least square
solver. If all entries of Γ are one, i.e. all key points are vis-
ible, B∗ can efficiently computed by:

B∗ =
(
ZTZ + ρI

)†(
ZT
(
W −T

)
+ Π + ρA

)
(16)

Sub-problem A:

A∗ = argminL(A;M,Z,B,T,Λ,Π)

= argmin
〈
Π,A−B

〉
F
+
ρ

2

∥∥∥A−B
∥∥∥2
F

s.t.
∥∥Al

∥∥
F
= 1, l = 1, ..., L.

(17)

The optimal solution for Eq(17) can be obtained as [6],

A∗l =
Bl − 1/ρΠl∥∥Bl − 1/ρΠl

∥∥
F

(18)

Sub-problem T:

T∗ = argminL(T;M,Z,B,A,Λ,Π)

= argmin
1

2

∥∥∥Γ� (ZB + T
)
−W

∥∥∥2
F
.

(19)

Since all columns of T ∈ R2F×P , τ ’s, are identical, we
compute a τ ∈ R2F×1 by minimizing the above objective:

τ ∗ = argmin
1

2

P∑
p=1

∥∥∥∥∥Γp � (ZBp + τ
)
−Wp

∥∥∥∥∥
2

2

, (20)

and optimal τ is computed by:

τ ∗ =
( P∑
p=1

Wp−
P∑
p=1

Γp�Γp�ZBp

)
�
( P∑
p=1

Γp�Γp

)
(21)

where � denotes the element-wise division.



Lagrange Multiplier Update: The lagrange multipliers
Π,Λ at each iteration are updated as,

Λ[i+1] = Λ[i] + µ
(
M[i+1] − Z[i+1]

)
Π[i+1] = Π[i] + ρ

(
A[i+1] −B[i+1]

) (22)

Penalty Update: Superlinear convergence of ADMM may
be achieved by µ, ρ→∞. In practice, we limit the value of
µ, ρ to avoid poor condition and numerical errors. Specifi-
cally, we adopt the following update strategy:

µ[i+1] = min(µmax, β1µ
[i])

ρ[i+1] = min(ρmax, β2ρ
[i])

(23)

We found experimentally µ[0] = 10−2, ρ[0] = 10−1,
β1(β2) = 1.1, and µmax(ρmax) = 105 to perform well.

5. Experiments
5.1. Evaluation setup

We compare the proposed method against the most
notable NRSf M algorithms: Tomasi-Kanade factoriza-
tion [16], and the state-of-the-art Dai et al.’s prior-less
NRSf M method [7], in terms of reprojection and recon-
struction errors. The reprojection error measures the accu-
racy of reprojected key points: 1

F

∑F
i=1 ‖Wi − Ŵi‖F . The

reconstruction error, on the other hand, evaluates the qual-
ity of estimated 3D shapes: 1

F

∑F
i=1 minκ ‖Si − κŜi‖F . κ

(scalar) handles the scale ambiguity in camera projection.
Extensive experiments are conducted to evaluate the per-

formance of our framework using both synthetic and nat-
ural images. For the synthetic images, we downloaded
70 CAD models of aeroplane category from Sketchup 3D
warehouse 1, and manually annotated their 3D key points.
The synthetic images are simply generated by projecting
random poses of these 3D models under weak-perspective
camera into the image plane. The PASCAL3D+ dataset [20]
is used for the natural image experiment, which consists of
12 object categories, and each category comes with a set of
annotated 3D CAD models and corresponding natural im-
ages. We utilize most of images from all categories except
those displaying highly occluded objects. More details of
the PASCAL3D+ dataset can be found in [20].

The main differences between synthetic and PAS-
CAL3D+ images come from the camera projection and
object occlusion. We utilize random weak-perspective
projection to generate the synthetic images of the aero-
plane dataset, which follows the weak-projection assump-
tion in this paper, whilst, the camera projection in the PAS-
CAL3D+ is perspective. Moreover, all key points in syn-
thetic images are visible, while, some key points in the PAS-
CAL3D+ may be occluded by object itself or other objects.

1https://3dwarehouse.sketchup.com/
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Figure 2. Comparing our method with Tomasi-Kanade [16] and
Dai et al. [7] methods using the synthetic images. (top) The re-
construction and reprojection errors. (bottom) Noise performance.

5.2. 3D reconstruction from synthetic images

The first experiment evaluates the performance of the
proposed method on synthetic images, comparing with the
Tomasi-Kanade factorization [16] and Dai et al.’s prior-less
NRSf M approaches [7]. The synthetic images are randomly
generated from all 3D CADs of the aeroplane dataset un-
der weak perspective projection, and these approaches are
applied to reconstruct the 3D shape of each image. The
predicted shapes, then, are projected into the 2D plane to
compute the key points reprojection error. The result of this
experiment is shown in Fig. 2 (top), demonstrating the su-
perior performance of our method to the other approaches.
This evaluation shows that the 3D shapes reconstructed by
the proposed Sf C not only represent the actual geometry of
the objects in 3D space, but also preserve the objects’ spa-
tial configuration when projected in the image plane. The
result also verifies the sensitivity of the low-rank factoriza-
tion NRSf M algorithm, e.g. Dai et al.’s method in the real
world uncontrolled circumstances, when the shape of an ob-
ject can not be modeled by very few shape bases [19].

5.3. Noise performance

To analyse the robustness of our method against inaccu-
rate key point detection, which is inevitable in real-world
circumstances, we repeat the first experiment (using syn-
thetic aeroplane images) with different levels of Gaussian
noise added to the ground truth 2D locations. The average
reconstruction and reprojection errors of ten random runs
for each noise ratio is reported in Fig. 2 (bottom), show-
ing that, compared to the other methods, the Sf C method is
more robust against inaccurate key point detections.
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Figure 3. The reprojection (left) and reconstruction (right) performance of the proposed method, Tomasi-Kanade factorization [16] and Dai
et al.’s method [7] on natural images (the PASCAL3D+ dataset) with ground truth key points.

5.4. 3D reconstruction of PASCAL3D+ dataset

To evaluate the performance of our framework over per-
spective projection and missing key points, we apply the
proposed Sf C approach to reconstruct 3D shapes of the
PASCAL3D+ natural images. There is no additional shape
and camera motion assumption given in this experiment,
and images of all 12 object categories are taken under un-
controlled real-world circumstances. All images and their
corresponding ground truth 3D CAD models are repre-
sented by a set of 2D and 3D annotated key points, respec-
tively, which together with the predicted 3D structures and
their reprojected 2D key points will be used to compute the
reconstruction and reprojection errors. Since the Tomasi-
Kanade factorization and Dai et al.’s method are not capable
of handling occluded objects, we utilize the non-convex ma-
trix completion via iterated soft thresholding [12] to predict
the missing points for these approaches. This experiment is
conducted over two different settings. In the first setting, we
use the ground truth key points of each image provided by
the PASCAL3D+. In the other setting, however, we adapt
the SDM [22] approach for key point detection, and the pre-
dicted points are used for 3D reconstruction.

Using ground truth key points: The reprojection and re-
construction errors for each object category are summarized
in Table 1 and showed by Fig. 3, where our approach outper-
forms the competitors and achieves the lowest reconstruc-
tion and reprojection error for each object category.

Using predicted key points: We adapt the Supervised
Descent Method (SDM) [22], originally proposed for the
task of facial landmarks alignment, to detect key points of
generic objects within natural images. The main assump-
tion of the SDM is that training samples fall into a Domain
of Homogeneous Descent (DHD)2, due to their limited pose
space and appearance variation [23]. This assumption, how-

2A DHD refers to optimization spaces of a function that share similar
directions of gradients.

ever, is rarely valid in an object category with large intra-
class appearance and pose variations that lies in multiple
DHDs. To deal with this situation, we propose to employ
a subset of training images with homogeneous gradient di-
rections to train an SDM in an “on-the-fly” manner. Partic-
ularly, given a test image, we use fc7 feature from the Con-
vNet [14] to retrieve itsM most similar samples from train-
ing images and use them to train an SDM. The training set
is generated by adding Gaussian noise to the ground truth
locations. After training the SDM regressors, we run them
independently from M different initializations (the ground
truth landmark locations of the M retrieved samples). This
returnsM sets of predicted key points, which will be further
pruned by the mean-shift algorithm. More details of SDM
training/testing can be found in [22].

The results are shown in Fig. 4 and Table 1. For both two
settings, using ground truth and predicted key points, our
method achieves the best reconstruction and reprojection
performance. The results also state that the performance
of using ground truth key points is much better than the de-
tected key points. Some qualitative results are shown in
Fig. 5, illustrating the 3D reconstruction of two instances of
each object category using ground truth key points and de-
tected key points respectively. During the experiments, we
observed that most of the failure cases are caused by severe
perspective effect (e.g. train), missing key points (e.g. sofa),
and inaccurate key point detection (e.g. chair).

6. Conclusion
In this paper, we introduce the concept of Structure from

Category to reconstruct 3D shapes of generic object cate-
gories from images. We argued that 3D shapes of an object
category, in general, form a non-rigid space. Thus, we for-
mulate the method of Sf C as a NRSf M algorithm. Unlike
most existing NRSf M methods, our approach requires no
additional constraint on the shape or camera motion. In-
stead, all shape and camera motion parameters (including
shape bases) are jointly estimated through an augmented
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Figure 4. The reprojection (left) and reconstruction (right) performance of the proposed method, Tomasi-Kanade factorization [16] and Dai
et al.’s method [7] on natural images (the PASCAL3D+ dataset) with detected key points.

category key points Reprojection Error Reconstruction Error
Tomasi
Kanade Dai et al. Our

method
Tomasi
Kanade Dai et al. Our

Method

aeroplane GT 224.3925 67.7078 24.5695 0.6035 0.7631 0.5257
detected 364.7172 282.5179 251.0064 0.7986 0.7465 0.6223

boat GT 202.9794 174.2009 11.1862 0.6892 0.7609 0.6061
detected 150.7320 171.5790 133.1670 0.7844 0.8531 0.7497

bicycle GT 135.9651 41.8621 24.7112 0.6490 0.2568 0.2495
detected 295.2249 223.5721 207.6959 0.7327 0.6695 0.6351

bottle GT 44.4231 6.4836 2.8315 0.6609 0.2865 0.2590
detected 108.4824 68.6833 69.7238 0.7087 0.4220 0.3812

bus GT 304.8072 82.1719 56.0355 1.1427 1.3839 0.8396
detected 564.3329 311.0550 264.9117 1.4164 1.3924 1.1562

car GT 173.6506 49.5333 35.4720 1.1062 0.5943 0.5808
detected 265.4429 173.8730 138.6603 0.9959 0.9636 0.8242

chair GT 75.9437 91.5107 33.0905 0.3958 0.9887 0.3671
detected 194.7178 136.9023 117.6726 1.0985 1.0511 0.9338

motorbike GT 150.6358 48.3516 27.1717 0.6096 0.5252 0.4344
detected 464.8820 280.3500 264.5549 0.7333 0.7185 0.6887

sofa GT 274.9890 64.2714 30.0575 1.1561 0.7727 0.6438
detected 416.9723 253.0140 196.6783 1.1198 1.1617 1.0126

diningtable GT 192.5072 130.5157 21.9391 0.8924 1.1084 0.6982
detected 258.3700 110.2296 103.4765 1.2404 1.1124 1.0107

train GT 260.5996 61.7900 34.2347 1.1215 1.1316 0.8957
detected 457.0754 296.3881 213.2750 1.2568 1.2728 1.1799

tvmonitor GT 119.8794 59.2110 6.6706 1.1740 1.1454 0.5653
detected 277.1977 100.6167 60.0780 0.9307 1.0412 0.7516

average GT 180.0644 73.1342 25.6642 0.8501 0.8098 0.5554
detected 318.1790 200.7318 168.4084 0.9847 0.9504 0.8288

Table 1. Reprojection and Reconstruction errors obtained by Tomasi Kanade factorization [16], Dai et al.’s method [7], and our method
using ground truth key points (GT) and detected key points (detected).

sparse shape-space model. Since all the key points are auto-
matically detected by an adapted SDM method, our frame-
work can be applied for large scale 3D reconstruction with
no limitation on the number of object categories, number of

images per category, object shape and camera motion. We
demonstrated the proposed Sf C method outperformed the
state-of-the-art NRSf M methods, using both synthetic and
natural images.



Figure 5. Visual evaluation of estimated structures for every category including aeroplane, bicycle, boat, bottle, bus, car, chair, diningtable,
motorbike, sofa, train, and tvmonitor. The first 3 columns use ground truth key points, while the last 3 columns use detected key points. In
each triplet columns, the left columns show the images, projection of estimated 3D shapes, projection of estimated landmarks (green), and
the ground truth landmarks (red, some are missing due to occlusion); The middle ones show the estimated 3D shapes in the same viewpoint
as camera; The right ones show a new viewpoint of the estimated 3D shapes. Two failure cases are shown in red. Best viewed in color.
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