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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective,
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper, we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain, both in terms of training
time and memory footprint, which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [5] and SIFT [13] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-
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Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [5]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [8], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [8, 11, 12], the approach’s central tenet is to learn
a filter, that when correlated with a set of training sig-
nals, gives a desired response (typically a peak at the origin
of the object, with all other regions of the correlation re-
sponse map being suppressed). Like correlation itself, one
of the central advantages of the single channel approach is
that it attempts to learn the filter in the frequency domain
due to the efficiency of correlation/convolution in that do-
main. Learning multi-channel filters in the frequency do-
main, however, comes at the high cost of computation and
memory usage. In this paper we present an efficient strategy
for learning multi-channel signals/filters that has numerous
applications throughout vision and learning.
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Contributions: In this paper we make the following con-
tributions

• We propose an extension to canonical correlation filter
theory that is able to efficiently handle multi-channel
signals. Specifically, we show how when posed in the
frequency domain the task of multi-channel correlation
filter estimation forms a sparse banded linear system.
Further, we demonstrate how our system can be solved
much more efficiently than spatial domain methods.
• We characterize theoretically and demonstrate empiri-

cally how our multi-channel correlation approach af-
fords substantial memory savings when learning on
multi-channel signals. Specifically, we demonstrate
how our approach does not have a memory cost that
is linear in the number of samples, allowing for sub-
stantial savings when learning detectors across large
amounts of data.
• We apply our approach across a myriad of detec-

tion and localization tasks including: eye localization,
car detection and pedestrian detection. We demon-
strate: (i) superior performance to current state of the
art single-channel correlation filters, and (ii) superior
computational and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with comparable
detection performance.

Notation: Vectors are always presented in lower-case bold
(e.g., a), Matrices are in upper-case bold (e.g., A) and
scalars in italicized (e.g. a or A). a(i) refers to the ith el-
ement of the vector a. All M -mode array signals shall be
expressed in vectorized form a. M -mode arrays are also
known as M -mode matrices, multidimensional matrices, or
tensors. We shall be assuming M = 2 mode matrix sig-
nals (e.g. 2D image arrays) in nearly all our discussions
throughout this paper. This does not preclude, however, the
application of our approach to other M 6= 2 signals.

A M -mode convolution operation is represented as the
∗ operator. One can express a M -dimensional discrete cir-
cular shift ∆τ to a vectorized M -mode matrix a through
the notation a[∆τ ]. The matrix I denotes a D ×D identity
matrix and 1 denotes a D dimensional vector of ones. Aˆ
applied to any vector denotes the M -mode Discrete Fourier
Transform (DFT) of a vectorized M -mode matrix signal a
such that â ← F(a) =

√
DFa. Where F() is the Fourier

transforms operator and F is the orthonormalD×D matrix
of complex basis vectors for mapping to the Fourier domain
for any D dimensional vectorized image/signal. We have
chosen to employ a Fourier representation in this paper due
to its particularly useful ability to represent circular convo-
lutions as a Hadamard product in the Fourier domain. Addi-
tionally, we take advantage of the fact that diag(ĥ)â = ĥ◦â,
where ◦ represents the Hadamard product, and diag() is
an operator that transforms a D dimensional vector into

a D ×D dimensional diagonal matrix. The role of filter ĥ
or signal â can be interchanged with this property. Any
transpose operator T on a complex vector or matrix in this
paper additionally takes the complex conjugate in a similar
fashion to the Hermitian adjoint [12]. The operator conj(â)
applies the complex conjugate to the complex vector â.

2. Related Work

Multi-Channel Detectors: The most notable approach to
multi-channel detection in computer vision can be found
in the seminal work of Dalal & Triggs [5] where the au-
thors employ a HOG descriptor in conjunction with a lin-
ear SVM to learn a detector for pedestrian detection. This
same multi-channel detection pipeline has gone on to be
employed in a myriad of other detection tasks in vision
ranging from facial landmark localization/detection [19] to
general object detection [7].

Computational and memory efficiency, however, are is-
sues for Dalal & Triggs style multi-channel detectors. A
central advantage of using a linear SVM, over kernel SVMs,
for learning a multi-channel detector is the ability to treat
that detector as a multi-channel linear filter during evalu-
ation. Instead of inefficiently moving the detector spatially
across a multi-channel image, one can take advantage of the
fast Fourier transform (FFT) for the efficient application of
correlating a desired template/filter with a signal.

During training, however, all learning is done in the spa-
tial domain. This can be a slow and inefficient process.
The strategy involves the extraction of positive (aligned)
and negative (misaligned) multi-channel image patches of
the object/pattern of interest across large amounts of data.
From a learning perspective, much of this storage can be
viewed as inefficient as it often involves shifted versions of
the same multi-channel image. We argue in this paper, that
this is a real strength of correlation filters as the objective
provides a way for naturally modeling shifted versions of an
image without the burden of explicitly storing all the shifted
image patches.

Multi-Channel Descriptors: Motivation for working with
multi-channel image signals (i.e. descriptors) rather than
raw single channel pixel intensities stems from seminal
work on the mammalian primary visual cortex (V1) [9].
Here, local object appearance and shape can be well cat-
egorised by the distribution of local edge directions, with-
out precise knowledge of their spatial location. It has been
noted [10] that V1-inspired descriptors obtain superior pho-
tometric and geometric invariance in comparison to raw
intensities giving strong motivation for their use in many
modern vision applications.

Jarrett et al. [10] showed that many V1-inspired fea-
tures follow a similar pipeline of filtering an image through
a large filter bank, followed by a nonlinear rectification
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step, and finally a blurring/histogramming step resulting in
a multi-channel signal (where the number of channels was
dictated by the size of the filter bank). Canonical features
such as HOG and SIFT employ filter banks with strong se-
lectivity to spatial frequency, orientation and scale (e.g. ori-
ented edge filters, Gabor filters, etc.).

Prior Art in Correlation Filters: Bolme et al. [3] re-
cently proposed an extension to traditional correlation fil-
ters referred to as Minimum Output Sum of Squared Error
(MOSSE) filters. This approach has proven invaluable for
many object tracking tasks, outperforming current state of
the art methods such as [1, 16]. A strongly related method
to MOSSE was also proposed by Bolme et al. [4] for object
detection/localization referred to as Average of Synthetic
Exact Filters (ASEF) which also reported superior perfor-
mance to state of the art. A full discussion on other vari-
ants of correlation filters such as Optimal Tradeoff Filters
(OTF) [15], Unconstrained MACE (UMACE) [17] filters,
etc. is outside the scope of this paper. Readers are encour-
aged to inspect [12] for a full treatment on the topic. Re-
cently, Boddeti et al. [2] introduced vector correlation fil-
ter to train multi-channel descriptors in the Fourier domain
for car landmark detection and alignment. This approach,
however, suffered from huge amount of memory usage and
computational complexity, since this approach required to
solve a KD × KD linear system, where K is the number
of channels and D is the length of vectorized signals.

3. Correlation Filters

Due to the efficiency of correlation in the frequency do-
main, correlation filters have canonically been posed in the
frequency domain. There is nothing, however, stopping one
(other than computational expense) from expressing a cor-
relation filter in the spatial domain. In fact, we argue that
viewing a correlation filter in the spatial domain can give:
(i) important links to existing spatial methods for learning
templates/detectors, and (ii) crucial insights into fundamen-
tal problems in current correlation filter methods.

Bolme et. al’s [3] MOSSE correlation filter can be ex-
pressed in the spatial domain as solving the following ridge
regression problem,

E(h) =
1

2

N∑
i=1

D∑
j=1

||yi(j)− hTxi[∆τ j ]||22 +
λ

2
||h||22 (1)

where yi ∈ RD is the desired response for the i-th ob-
servation xi ∈ RD and λ is a regularization term. C =
[∆τ 1, . . . ,∆τD] represents the set of all circular shifts for
a signal of length D. Bolme et al. advocated the use of a
2D Gaussian of small variance (2-3 pixels) for yi centered
at the location of the object (typically the centre of the im-

age patch). The solution to this objective becomes,

h∗ = H−1
N∑
i=1

D∑
j=1

yi(j)xi[∆τ j ] (2)

where,

H = λI +

N∑
i=1

D∑
j=1

xi[∆τ j ]xi[∆τ j ]
T . (3)

Solving a correlation filter in the spatial domain quickly be-
comes intractable as a function of the signal length D, as
the cost of solving Equation 2 becomes O(D3 +ND2).

Efficiency in the Frequency Domain: It is well understood
in the signal processing community that circular convolu-
tion in the spatial domain can be expressed as a Hadamard
product in the frequency domain. This allows one to express
the objective in Equation 1 more succinctly and equivalently
as,

E(ĥ) =
1

2

N∑
i=1

||ŷi − x̂i ◦ conj(ĥ)||22 +
λ

2
||ĥ||22 (4)

=
1

2

N∑
i=1

||ŷi − diag(x̂i)
T ĥ||22 +

λ

2
||ĥ||22 .

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The
complex conjugate of ĥ is employed to ensure the oper-
ation is correlation not convolution. The equivalence be-
tween Equations 1 and 4 also borrows heavily upon another
well known property from signal processing namely, Parse-
val’s theorem which states that

xT
i xj = D−1x̂T

i x̂j ∀i, j, where x ∈ RD . (5)

The solution to Equation 4 becomes

ĥ∗ = [diag(ŝxx) + λI]−1
N∑
i=1

diag(x̂i)ŷi (6)

= ŝxy ◦−1 (ŝxx + λ1)

where ◦−1 denotes element-wise division, and

ŝxx =

N∑
i=1

x̂i◦conj(x̂i) & ŝxy =

N∑
i=1

ŷi◦conj(x̂i) (7)

are the average auto-spectral and cross-spectral energies re-
spectively of the training observations. The solution for ĥ in
Equations 1 and 4 are identical (other than that one is posed
in the spatial domain, and the other is in the frequency do-
main). The power of this method lies in its computational
efficiency. In the frequency domain a solution to ĥ can be
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found with a cost of O(ND logD). The primary cost is
associated with the DFT on the ensemble of training sig-
nals {xi}Ni=1 and desired responses {yi}Ni=1.

Memory Efficiency: Inspecting Equation 7 one can see an
additional advantage of correlation filters when posed in the
frequency domain. Specifically, memory efficiency. One
does not need to store the training examples in memory be-
fore learning. As Equation 7 suggests one needs to sim-
ply store a summation of the auto-spectral ŝxx and cross-
spectral ŝxy energies. This is a powerful result not often dis-
cussed in correlation filter literature as unlike other spatial
strategies for learning detectors (e.g. linear SVM) whose
memory usage grows as a function of the number of train-
ing examples O(ND), correlation filters have fixed mem-
ory overheads O(D) irrespective of the number of training
examples.

4. Our Approach
Inspired by single-channel correlation filters we shall ex-

plore a multi-channel strategy for learning a correlation fil-
ter. We can express the multi-channel objective in the spa-
tial domain as

E(h) =
1

2

N∑
i=1

D∑
j=1

||yi(j)−
K∑

k=1

h(k)Tx
(k)
i [∆τ j ]||22 +

λ

2

K∑
k=1

||h(k)||22 (8)

where x(k) and h(k) refers to the kth channel of the vec-
torized image and filter respectively where K represents
the number of filters. As with a canonical filter the de-
sired response is single channel y = [y(1), . . . ,y(D)]T

even though both the filter and the signal are multi-channel.
Solving this multi-channel form in the spatial domain is
even more intractable than the single channel form with a
cost of O(D3K3 + ND2K2) since we now have to solve
a KD ×KD linear system.

Fourier Efficiency: Inspired by the efficiencies of posing
single channel correlation filters in the Fourier domain we
can express Equation 8 equivalently and more succintly

E(ĥ) =
1

2

N∑
i=1

||ŷi −
K∑

k=1

diag(x̂
(k)
i )T ĥ(k)||22 +

λ

2

K∑
k=1

||ĥ(k)||22 (9)

where ĥ = [ĥ(1)T , . . . , ĥ(K)T ]T is a KD dimensional
supervector of the Fourier transforms of each channel. This
can be simplified further,

E(ĥ) =
1

2

N∑
i=1

||ŷi − X̂iĥ||22 +
λ

2
||ĥ||22 . (10)

where X̂i = [diag(x̂
(1)
i )T , . . . , diag(x̂

(K)
i )T ]. At first

glance the cost of solving this linear system looks no differ-
ent to the spatial domain as one still has to solve a KD ×
KD linear system:

ĥ∗ = (λI +

N∑
i=1

X̂T
i X̂i)

−1
N∑
i=1

X̂T
i ŷi (11)

Fortunately, X̂ is sparse banded and inspecting Equa-
tion 10 one can see that the jth element of each corre-
lation response ŷi(j) is dependent only on the K val-
ues of V(ĥ(j)) and V(x̂(j)), where V is a concatena-
tion operator that returns a K × 1 vector when applied
on the jth element of a K-channel vectors {a(k)}Kk=1, i.e.
V(a(j)) = [conj(a(1)(j)), ..., conj(a(K)(j))]T . Therefore,
we can equivalently express Equation 10 through a simple
variable re-ordering as:

E(V(ĥ(j))) =
1

2

N∑
i=1

||ŷi(j)− V(x̂i(j))
TV(ĥ(j))||22 +

λ

2
||V(ĥ(j))||22,

for j = 1, ..., D. (12)

Therefore, an efficient solution of Equation 10 can be
found by solving D independent K ×K linear systems us-
ing Equation 12 as:

V(ĥ(j))∗ = Ĥ
−1

N∑
i=1

V(x̂i(j))ŷi(j) (13)

where,

Ĥ = λI +

N∑
i=1

V(x̂i(j))V(x̂i(j))
T (14)

This results in a substantially smaller computational cost
of O(DK3 + NDK2) than solving this objective in the
spatial domain O(D3K3 +ND2K2).

Memory Efficiency: As outlined in Section 3 an additional
strength of single channel correlation filters are their mem-
ory efficiency. Specifically, one does not need to hold all
the training examples in memory. Instead, they need to just
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compute the auto-spectral ŝxx and cross-spectral ŝxy en-
ergies respectively of the training observations (see Equa-
tion 7). The memory saving become sizable as the num-
ber of training examples increase as the memory over-
head remains constant O(D) instead of O(ND) if one was
to employ a spatial objective. A similar strategy can be
taken advantage of in our multi-channel correlation form.
For multi-channel correlation filters this saving becomes
even more dramatic as the memory overhead remains con-
stant O(K2D) as opposed to O(NDK). This property
stems from the sparse banded structure of multi-channel
correlation filters such that the problem can be posed as D
independent K ×K linear systems.

5. Experiments
We evaluated our method across a number of challeng-

ing localization and detection tasks: facial landmark local-
ization, car detection, and pedestrian detection. For all our
experiments we used the same parametric form for the de-
sired correlation response, which we defined as a 2D Gaus-
sian function with a spatial variance of two pixels whose
the peak is centered at the location of the target of interest
(facial landmarks, cars, pedestrians, etc.). Across all our
experiments we used the same multi-channel image repre-
sentation, specifically HOG [5]. All correlation filters, both
single-channel and multi-channel, employed in this paper
used a 2D cosine window (as suggested by Bolme et al. [3])
to reduce boundary effects.

5.1. Facial Landmark Localization

We evaluated our method for facial landmark localiza-
tion on the Labeled Faces in the Wild (LFW) database1, in-
cluding 13,233 face images stemming from 5749 subjects.
The images were captured in the wild with challenging vari-
ations in illumination, pose, quality, age ,gender, race, ex-
pression, occlusion and makeup. For each image, there are
ground truth annotations for 10 facial landmarks as well as
the bounding box of the face. We used the bounding box to
crop a 128×128 face image enclosing all the landmarks. We
then employed a 10-fold cross validation procedure to com-
pute evaluation results across folds. 10% of images were
approximately used for testing, with the remaining 90% be-
ing used for learning/training the detectors. The folds were
constructed carefully to have no subjects in common.

All the cropped images were first pre-processed using
Gamma correction and Difference of Gaussian (DoG) fil-
tering to compensate for the large variations in illumination.
Multi-channel HOG descriptors were computed using 9 ori-
entation bins normalized by cell and block sizes of 6×6 and
3×3, respectively. Localization occured by correlating each
landmark detector across the cropped face image where the

1http://vis-www.cs.umass.edu/lfw

peak response location was used as the predicted landmark
location. The facial landmark localization was evaluated
using normalized distance between the desired location and
the predicted coordinate of the landmarks:

d =
‖pi −mi‖2
‖ml −mr‖2

(15)

where mr and ml respectively indicate the ground truth of
the right and left eye, and mi and pi are respectively the true
and predicted locations of the landmark of interest. A local-
ization with d < τ was considered successful where τ is a
threshold defined as a fraction of the inter-ocular distance
(the denominator of the above equation).

Results and Analysis: Inspecting Figure 2 one can see the
superiority of our multi-channel approach compared to state
of the art single-channel correlation filter methods MOSSE
and ASEF. Further, we compare our performance to leading
non-correlation filter methods: specifically Everingham et
al. [6] and Valstar et al. [18] which also show the superi-
ority of our approach. Some visual examples of the output
from our approach employed for facial landmark localiza-
tion can be seen in Figure 3. It should be noted that this
approach to landmark localization employs no shape prior,
relying instead solely on the landmark detectors making a
fair comparison with more recent methods in facial land-
mark localization such as Zhu and Ramanan [19] difficult.

5.2. Car Detection

The objective of this experiment is to evaluate our pro-
posed multi-channel correlation filter (MCCF) strategy for
car localization in street scene images. We selected 1000
images from the MIT StreetScene 2 database, each image
contains one car taken from an approximate left-half-frontal
view. All the selected images were first cropped to a size
of 360×360, and then power normalized to have zero-mean
and unit norm. Our MCCF was trained and evaluated in the
same manner to the previous experiment using 100 × 180
car patches cropped from training images (excluding street
scenes). The peak of the Gaussian desired responses was
located at the center of the car patches. We selected the
peak of the correlation output as the predicted location of
a car in street scene of the testing images. Figure 5.2 de-
picts our localization performance in comparison to leading
single-channel correlation filters MOSSE and ASEF where
we obtain superior performance across all thresholds. Vi-
sual examples of our car detection results can be seen in
Figure 5.

5.3. Pedestrian Detection

We evaluated our method for pedestrian detection using
Daimler pedestrian dataset [14] containing five disjoint im-

2http://cbcl.mit.edu/software-datasets/
streetscenes
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Figure 2. The performance of facial features localization: localization rate versus threshold (best viewed in color).

Figure 3. Visualizing facial features localization, first and second rows show successful localizations, and the third row show wrong
localizations.
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Figure 4. Car detection rate as a function of threshold (pixels).

ages sets, three for training and two for testing. Each set
consists of 4800 pedestrian and 5000 non-pedestrian images
of size 36 × 18. The oriented gradient channels were com-
puted using 5 orientation bins with cell and block sizes of
3 × 3. Our MCCF was trained using all the negative and
positive training samples with their corresponding desired
responses. Given a test image, we first correlate it with the
trained MCCF and then measure the Peak-to-Sidelobe Ra-

tio (PSR)3 of the output with a threshold for detection. This
threshold was chosen through a cross-validation process.

Comparison with Linear SVM: In this experiment we
chose to compare our MCCF directly with a spatial detec-
tor learned using a linear SVM (as originally performed by
Dalal and Triggs [5]). The linear SVM was trained in al-
most exactly the same fashion as our MCCF so as to keep
the comparison as fair as possible. Inspecting Figure 6 (a)
one can see our MCCF obtains similar detection results to
linear SVM in terms of detection performance as a func-
tion of different false positive rates. This result is not that
surprising as the linear SVM objective is quite similar to
the MCCF objective (which can be interpreted as a ridge
regression when posed in the spatial domain). It is well
understood that the linear SVM objective enjoys better tol-
erance to outliers than ridge regression, but in practice we
have found that advantage to be only marginal when learn-
ing multi-channel detectors.

3Peak-to-Sidelobe Ratio (PSR) is a common metric used in correlation
filter literature for detection/verification tasks. It is the ratio of the peak
response to the local surrounding response, more details on this measure
can be found in [12].
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Figure 5. Car detection results. The first and second rows: true detections, and the third row: wrong detections. The red, blue and green
boxes represents detection by our method, MOSSE and ASEF, respectively.

250 500 1000 2000 4000 8000 16000 24000
MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32

Table 1. Comparing minimum required memory (MB) of our method with SVM as a function of number of training images.

Inspecting Figure 6 (b) one can see detection perfor-
mance as a function of number of training data. It is in-
teresting to note that our MCCF objective can achieve good
detection performance with substantially smaller amounts
of training data when compared to linear SVM. This supe-
rior performance can be attributed to how correlation filters
implicitly use synthetic circular shifted versions of images
within the learning process without having to explicitly cre-
ate the images. As a result our MCCF objective can do
“more with less” by achieving good detection performance
with substantially less training data.

Computation and Memory Efficiency: Figure 6(c) de-
picts one of the major advantages of MCCF, and that is its
superior scalability with respect to training set size. One
can see how training time starts to increase dramatically for
linear SVM4 where as our training time only increases mod-
estly as a function of training set size. The central advan-
tage of our proposed approach here is that the solving of
the multi-channel linear system in the frequency domain is
independent to the number of images. Therefore the only
component of MCCF that is dependent on training set size

4We employed the efficient and widely used LibLinear linear SVM
package http://www.csie.ntu.edu.tw/˜cjlin/liblinear
in all our experiments.

is the actual FFT on the training images which should only
have the moderate computational cost O(ND logD) as the
training set size N increases.

Finally, inspecting Table 1 one can see the superior na-
ture of our MCCF approach in comparison to linear SVM
with respect to memory usage. As discussed in Section 4
our proposed MCCF approach has a modest fixed memory
requirement independent of the training set size, whereas
the amount of memory used by the linear SVM approach is
a linear function of the number of training examples.

6. Conclusion
In this paper, we propose a novel extension to correla-

tion filter theory which allows for the employment of multi-
channel signals with the efficient use of memory and com-
putations. We demonstrate the advantages of our new ap-
proach across a variety of detection and localization tasks.
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Figure 6. Comparing our method with SVM + HOG (a) ROC curve of detection rate as a function of false positive rate (8000 training
images), (b) pedestrian detection rate at FPR = 0.10 versus number of training images, and (c) training time versus the number of training
images.

Figure 7. Some samples of (top) true detection of pedestrian (true positive), (middle) false detection of non-pedestrian (false negative), and
(bottom) false detection of pedestrian (false positive).
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