MULTI-CHANNEL CORRELATION FILTERS FOR HUMAN ACTION RECOGNITION HAMED KIANI¹, TERENCE SIM¹ AND SIMON LUCEY² ¹School of Computing, NUS, Singapore ²Robotics Institute, Carnegie Mellon University, USA {hkiani,tsim}@comp.nus.edu.sg, slucey@andrew.cmu.edu

ABSTRACT

In this work, we propose to employ multichannel correlation filters for recognizing human actions (e.g. waking, riding) in videos. In our framework, each action sequence is represented as a multi-channel signal (frames) and the goal is to learn a multi-channel filter for each action class that produces a set of desired outputs when correlated with training examples. The experiments on the Weizmann and UCF sport datasets demonstrate superior computational cost (realtime), memory efficiency and very competitive performance of our approach compared to the state of the arts.

PROPOSED FRAMEWORK

CONTRIBUTIONS

- Extending canonical correlation filter theory to efficiently handle multi-channel signals
- A multi-channel detector whose training memory is independent of the number of training samples
- Superior performance to current state of the art correlation filters, and superior computational and memory efficiency in comparison to spatial detectors (e.g. linear SVM) with comparable detection performance

$$\mathbf{x^{(k)}} \| \begin{array}{c} 2 \\ 2 \end{array} + \lambda \sum_{k=1}^{K} \| \mathbf{h^{(k)}} \| \begin{array}{c} 2 \\ 2 \end{array} \| 2 \\ 2 \end{array} \| \mathbf{x^{(k)}} \| 2 \\ \mathbf{x^{(k$$

QUALITATIVE RESULTS

lethod	Weizmann	UCF sport
ng et al.	100%	-
i et al.	98.7%	90.6%
ng et al.	97.8 %	77.4%
pos et al.	96.7 %	80.0%
guez et al.	86.6%	69.2%
et & Wolf	_	79.3%
method	97.8%	82.6%

•	Edge	Temp.	HoG (5 binc)
. y			(30113)
	91.2%	92.3%	97.8%