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Abstract

The application of correlation filters for the task of facial
landmark detection has been studied by many vision works.
Their success, however, is limited by the presence of large
pose variations, expression and occlusion in face images.
Moreover, existing correlation filters may suffer from poor
discrimination to distinguish visually similar landmarks
such as the right and left eyes. In this work, we present a
new framework, referred to as Correlation Filter Cascade,
to address the above limitations. The proposed framework
consists of a set of correlation filters with different spatial
supports (sizes) which are connected together in a cascade
form. More specifically, the size of filters decreases from the
lower to upper levels. Filters at lower levels implicitly code
face shape information since they are trained using large
patches stemmed from face images. This avoids ambiguous
detections caused by landmarks with similar appearance.
Detections in these levels, however, may not be accurate
and suffer from small localization errors, mainly caused by
face pose, expression and occlusion. Therefore, locations
detected by lower levels will be further used by the higher
levels to narrow down their search regions. Since the filters
at higher levels have smaller size, they are less affected by
pose, expression and occlusion, and thus, can perform more
accurately. The evaluation on BiolD and LFPW shows the
superiority of our method compared to prior correlation fil-
ters and leading facial landmark detectors.

1. Introduction

Localizing facial landmarks has been widely studied by
the vision community, due to its critical role for the task
of face recognition and analysis [2, 24, 25, 8, 22, 28, 19].
This is a very challenging task when face images are cap-
tured under uncontrolled imaging conditions such as ex-
treme pose, illumination, expression and occlusions. Exist-
ing approaches can be generally categorized in two classes:
local regions [1, 2, 16, 29, 26] and global shape based ap-
proaches [20, 27, 17, 19, 21, 22].
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Approaches in the first class involve training a part detec-
tor for each facial landmark, and localization is performed
by classifying local patches in a face image as either land-
mark or non-landmark patch. Promising results of these ap-
proaches have been reported, especially in the presence of
severe face pose, expression and occlusion [29, 2]. They,
however, are not robust against ambiguous detections, in
which a detector may return multiple visually similar candi-
date regions (e.g., the left and right eyes). In this case, spa-
tial constraints can be applied (as post-processing) to find
an optimal configuration of facial landmarks and remove
the wrong candidates [10, 16].

The global shape based approaches, on the other hand,
detect landmarks by exploiting visual information of the en-
tire face or a set of local patches around the target landmark.
This is typically followed by a post-processing step that re-
fines the initial detection using face shape constrains. The
Active Appearance Model [5], Active Shape Model [6] and
their variations [2, 19, 20, 27] are typical methods which
employ face global shape and geometric information for ro-
bust landmark detection. These approaches have shown to
be capable of handling wrong local detections caused by
visual similarity. They, however, are not robust against se-
vere face pose, expression and occlusion. Moreover, op-
timization strategies (e.g. gradient descent) used by these
approaches are very sensitive to the initialization and may
suffer from local minimum. Furthermore, optimizing shape
constraints might be time consuming and, thus, not appro-
priate for real time landmark localization.

Correlation filters, initially developed by Hester and
Casasent [11], have been applied on many vision tasks [11,
15, 18, 4, 3, 13, 14, 9]. In particular, correlation filters
aimed at learning a filter/template that returns correspond-
ing desired outputs when correlated with a set of training
images. Interest in correlation filters in the vision commu-
nity has increased through the works of Bolme et al. on
Minimum Output Sum of Squared Error (MOSSE) corre-
lation filters [3]. This work addressed some of the clas-
sical problems with earlier correlation filters (e.g. over-
training and poor generalization) and was extremely effi-
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Figure 1. Correlation filter cascade for facial landmark detection. The size of filters decreases from the lower to upper levels. Detection at
each level is used by the next level to limit its search region, shown by the red square. The color filled circles show the predicted landmark
at each level. The final localization is performed by averaging all locations detected by all levels, the yellow filed circle. Best viewed in

color.

cient in terms of computation and memory usage. Recently,
Kiani et al. [13] introduced Multi-Channel Correlation Fil-
ters (MCCFs) to employ discriminative descriptors (e.g.,
HOG [7]) for learning multi-channel filters/detectors effi-
ciently in the frequency domain. More recently, they ad-
dressed the problem of boundary effects during filter train-
ing using correlation filters with limited boundaries [9].

All of these correlation filter techniques were evaluated
for landmark localization with very promising results. Al-
most all of these works (except [9]) used whole face images
to train landmark correlation filters, which, as mentioned
earlier, may not be robust against pose variations, expres-
sion and occlusion. In a different manner, the approach in-
troduced by [9] used all possible patches within in a face im-
age to train a correlation filter with much smaller size. Com-
pared to other techniques, this approach was more robust
against pose, expression and occlusion, but suffered from
wrong detections caused by visually similar landmarks.

To deal with above limitations, we introduce a cas-
cade framework for the task of facial landmark localization.
Fig. 1 depicts the scheme of the proposed framework. In
particular, our framework consists of a set of correlation fil-
ters with different spatial supports (sizes) which are hierar-
chically connected together in a cascade manner. The size
of filters decreases from lower to higher levels, meaning that
filters at lower levels have bigger size compared to those at
higher levels. Filters at lower levels are trained using big-
ger patches (for instance, the filter at level O in Fig. 1 is
trained using whole face images) and explicitly capture face
shape information. This offers stability against ambiguous
detections. Filters at higher levels, on the other hand, are
trained using smaller patches, and, as a result, are more ro-

bust against uncontrolled face pose, occlusion and expres-
sion. The correlation outputs returned by each level is used
to narrow down the search region for its upper level. The
final landmark location is determined by averaging the lo-
cations estimated by all filters over the cascade framework.

2. Cascade Correlation Filters

The formulation of Multi-Channel Correlation Filters
(MCCEFs) in the spatial domain is defined as [13],
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where x(*) and h(*) refers to the kth channel of the vector-
ized image/frame and filter respectively, and K represents
the number of filters. D and /N denote the length of vector-
ized image and number of training examples, respectively.
a[AT;] performs a j-step discrete circular shift to a vector
a, and ) is the regularization term. y;(j) refers to the jth
element of the vectorized correlation output y,;. Any trans-
pose operator © on a complex vector or matrix in this paper
additionally takes the complex conjugate.

Solving this multi-channel objective in the spatial do-
main suffers from a high complexity of O(D3K3 +
ND?K?) since one has to solve a KD x KD linear sys-
tem [13]. Inspired by the efficiencies of posing single chan-
nel correlation filters in the frequency domain [3], Equa-
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The cost of solving this linear system looks no dif-
ferent to the spatial domain as one still has to solve
a KD x KD linear system. It is, however, shown in [13]
that X is sparse banded and Equation 3 can be efficiently
solved through a variable re-ordering with smaller cost
of O(DK? + NDK?). Readers are encouraged to refer
to [13, 3] for more details of multi/single channel CFs and
their efficient memory usage and computational complexity.

Our proposed cascade framework contains a set of MC-
CFs arranged in a cascade form, denoted by {h;} ZL;()l,
where L is the number of cascade levels. Suppose that hy
indicates the MCCF with the size of h; x w; x K learned for
level I (Eq 4)'. The size of filters decreases from the lower
to higher levels, meaning that h; < h; and w; < w; if filter
7 is located at a higher level than filter 5 over the cascade.

Intuitively, the filter at the lowest level is trained using
full face images. Thus, it implicitly encodes face shape and
geometric information [13]. This significantly reduces am-
biguous detections caused by visually similar patches. This
advantage, however, comes at the high cost of inaccurate
localization, especially when a face image displays severe
pose, expression and occlusion. A localization is inaccurate
if there is no ambiguous detection, but the landmark is de-
tected with small spatial error [13]. The filter at the second
level is trained using smaller patches with less face shape
information. This increases the risk of ambiguous detec-
tion, while being more robust to face pose, expression and

!Please note that any type of CFs can be used in our framework (e.g.,
MOSSE [3] and ASEF [4]). We employ MCCF to exploit multi-channel
features such as HOG in our framework.

occlusion. To avoid ambiguous detection, the filter at the
second level only explores the local region around the loca-
tion predicted by the first level (red squers in Fig.1) to find
the landmark. This procedure repeats till the last level. The
final localization is determined by averaging all locations
detected by all filters over the cascade.

Training cascade filters. Eq 4 states that the size of MCCF
is same as the size of training samples. Therefore, we em-
ploy patches with different size to train filters in our cascade
framework. To this end, we crop patches with size of h; X w;
from face images centered upon the landmark of interest
(e.g., the right eye) and use them to train filter h, at level
[ using Eq 4. This provides a set of MCCFs with different
size which we further use to form our cascade framework.

Testing cascade filters. Given a test image, the MCCF at
the first level is correlated over the whole face image and the
maximum peak of the correlation output is selected as ap-
proximated landmark location. The filter at the second level
is only correlated over the local region around the location
provided by the first level. This procedure is performed for
all levels of the cascade. The average of locations detected
by all filters is considered as the final landmark localization.

3. Experimental Results

We evaluated the proposed framework on two publicly
available datasets, BioID [12] and LFPW [2].

3.1. Datasets

LFPW (Labeled Face Parts in the Wild) All face images
in this dataset are downloaded from the web and represent
large variations in pose, illumination, expression and oc-
clusion. The original version of this dataset contains 1100
training and 300 testing images. Since this dataset provides
only web image URLs, some of URLs are not currently
available. Therefore, we only downloaded 714 training and
214 testing images.

BiolID dataset consists of 1521 near frontal face images
of 23 subjects captured with various scales and face expres-
sions in lab environment. This dataset is commonly used
to evaluate most of the previous methods, allowing to com-
pare our method to them. We used the evaluation procedure
provided by [24], where 1000 images are randomly selected
from the dataset for training and the rest for testing.

3.2. Implementation Details

Here, we explain implementation details and investigate
the number of cascade levels using LFPW dataset.

Face Bounding Box. The face detector proposed by Vi-
ola and Jones [23] is applied to find the face bounding box,
which is further enlarged by 20% in order to ensure that all
facial landmarks are enclosed. All boxes are resized to have



the size of 128 x 128 pixels. We assumed that there is only
one face in each image and all images are in gray scale.

Desired Correlation Outputs. A 2D Gaussian function
with spatial variance of 2 is employed to define the desired
correlation outputs whose peak is located upon the center of
the target landmark, following [13, 3].

Landmark Detection and Evaluation: Following the
previous works, we use the normalized inter-ocular dis-
tance, d = M for evaluation, where m, and my
respectively indicate the true coordinates of the right and
left eye, and p; and g; are the predicted and ground truth
locations of the i-th landmark, respectively. A localization
with distance d < th is considered as a successful local-
ization. The threshold #4 is set to a fraction of inter-ocular

distance (0.10 in our experiments).

Feature Extraction. We extract 43 feature channels for
each face image, including 40 Gabor features (eight differ-
ent orientations and five scales), two Sobel features (hor-
izontal and vertical gradient magnitudes) and one power-
normalized intensity image. A Cosine-window is applied on
all feature channels to reduce the frequency effects caused
by opposite image borders in the Fourier domain [3, 13].

Number of Cascade Levels. We investigate the perfor-
mance of our framework with respect to the number of cas-
cade levels. For this purpose, we trained five different MC-
CFs of size 128 x 128, 64 x 64, 32 x 32, 16 x 16 and 8 x 8
using 128 x 128 LFPW training images. Then we employed
these filters to form five cascade correlation filters with dif-
ferent number of levels, namely LO (one level by 128 x 128
filter), L1 (two levels by 128 x 128 and 64 x 64 filters), L2
(three levels by 128 x 128, 64 x 64 and 32 x 32 filters), L3
(four levels by 128 x 128, 64 x 64, 32x 32 and 16 x 16 filters)
and L4 (five levels, including all the correlation filters).

The localization rate of these cascade filters for detecting
10 landmarks of LFPW is shown in Fig. 2. The lowest and
highest localization rates belong to LO and L4 detectors, re-
spectively. Adding smaller filters in the cascade framework
improves the detection performance, especially for mouth
and lip landmarks which can be potentially more affected
by pose and expression.

Figure 4 depicts how adding more levels over the cascade
framework improves the detection performance for several
examples with partial occlusions, pose variation and expres-
sion. Detection at the first level is not very accurate, partic-
ularly for occluded and under expression landmarks. The
filter at the first level is trained using whole face images
and, thus, is sensitive to pose, expression and occlusion.
This results in inaccurate detections. These errors are im-
proved over the next levels using smaller filters. Moreover,
the search area proposed by the first level avoid smaller fil-
ters to detect ambiguous landmarks.
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Figure 2. Evaluating the cascade framework with different number
of levels on LFPW dataset.
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Figure 3. Comparing the proposed approach to state of the art
methods on the LFPW dataset. (top) Mean normalized localization
error, and (bottom) localization accuracy at threshold of d < 0.10.

3.3. Comparison with the-state-of-the-art

We compare our framework with the-start-of-the-art and
leading landmark detectors in the literature on both LFPW
and BiolID datasets, including Structured-Output Regres-
sion Forests (SO-RF) [24], Conditional Regression Forests
(C-RF) [8], Privileged Information-based Conditional Re-
gression Forest (PI-CRF) [25], Belhumeur’s part based
detectors [2], Boosted Regression [22], Exemplar-based
Graph Matching [28], Extended Active Shape Model [19].



level 2

Figure 4. Accurate landmark detection over cascade levels. The ground truth and predicted locations are shown by blue dots and red
squares, respectively. The images are selected from the LFPW testing set (best viewed in color).

Figure 3 illustrates the results of this comparison. Our
method is trained using 714 available training and tested
on 214 available testing examples. The results of other ap-
proaches are borrowed from their reference papers, where
they evaluated their approach using 821-870 and 214 avail-
able training and testing examples, respectively. We also
compared our approach to the performance of human anno-
tators, borrowing from [24].

According to Figure 3, our approach outperformed all
other approaches except SO-RF [24]. The main reason is
that SO-RF considers shape constraints to remove wrong
detections. This is, however, not the case in our method.
Lacking direct shape constraints for landmark detection
sometimes leads to wrong detections with large location er-
rors. Even a very small number of these wrong detections
will result in a very large average error. This rarely happens
in approaches with shape constraints. Our method obtained
superior performance compared to Conditional Regression
Forests (C-RF) [8], Privileged Information-based Condi-
tional Regression Forest (PI-CRF) [25], part based detec-
tor [2] for both mean detection error and localization rate.
The average localization rate of our method for all land-
marks is 93.73% compared to 81.86% of C-RF and 83.80%
PI-CREF, Figure 3 (bottom). The accuracy of our method is
very competitive to human annotators. We even achieved
lower error for five landmarks, left eye right, right eye left,
nose left, nose right and outer upper lip. Figure 6 depicts
landmarks detected by our approach on LFPW images.

The result on BioID dataset is shown in Figure 5, com-
paring our method to the state of the art on this dataset. Fig-
ure 5(a) shows the cumulative error versus the fractions of
inter-ocular distance d for m,.17 (for 17 facial landmarks
of all 19 internal landmarks). These results are reported by
[28], [2], [22] and [24]. This comparison shows the supe-
riority of our method against all the other approaches for
(almost) all fractions of inter-ocular distance. Figure 5(b)
illustrates the mean detection error normalized by inter-
ocular distance of our method, [22] and [24] for all 19 inter-
nal landmarks (chain landmark is discarded). We borrowed
the parts ID from [24]. The mean error of P9 and P14 is
not reported in [22]. The results shows that our method
achieved the lowest errors for 15 of 19 landmarks. Figure 7
visualizes the landmarks of some BiolD images localized
by our method.

Detection speed. Aside from the competitive accuracy, our
approach achieved superior detection speed by localizing
each landmark within 400 face images in one second (2.5
ms to detect a landmark in a 128 x 128 face image), which
is 16 times more faster than the state-of-the-art approaches
with real-time detection speed (25 face images per second)
reported by [24], [8] and [25]. This detection time includes
all steps in the framework, including computing FFT/IFFT
of filter and image channels, generating correlation outputs
and evaluating the correlation outputs for final detection,
excluding face detection in the image and feature extraction.



Figure 6. Detection examples of the LPFW dataset. The first two rows show the successful detections under challenging circumstances of
expression, occlusion, pose, lighting and poor quality. The third row shows some failed cases. The red and blue marks respectively show

the detected landmark and the ground truth (best viewed in color).

Figure 7. Detection examples of the BiolD dataset. The red squares and blue dots represent the detected and ground truth landmarks,

respectively (best viewed in color).

3.4. Comparison with Prior Correlation Filters

This experiment compares cascade correlation filters
with the prior CF-based approaches, including single-
channel correlation filters (MOSSE) [3], correlation filters
with limited boundaries (CF w LB) [9], multi-channel corre-
lation filters (M CCF) [13] and the cascade framework (Cas-
cade CF) using the BiolD dataset.

Similarly, 1000 face images are randomly selected for
training and the rest for testing. We use normalized im-
age intensities to train and test the single-channel correla-
tion filters (MOSSE and CFwLB), and 43 feature channels
(40 Gabor magnitudes, 2 Sobels and one normalized inten-
sities) to train and test the multi-channel features (MCCF
and our approach). We employ 64 x 64 landmark patches
cropped from the face images (centered upon the landmark
of interest) to train the MOSSE and MCCF. For correlation
filters with limited boundaries, we employ full 128 x 128

face images to train 64 x 64 landmark filters.> Similarly,
we use a five-levels cascade correlation filters. All these fil-
ters are applied on face images of size 128 x 128 for testing.

The result is illustrated in Figure 8, showing that the low-
est and the best localization rate is obtained by MOSSE
(77.45 %) and cascade CF (98.14 %), respectively. MOSSE
obtained the worse accuracy since it employs image inten-
sities which are not discriminative enough to distinguish
patches with similar appearance (ambiguous detections).
Moreover, as argued in [13], image intensities are not ca-
pable of handling low image quality and illumination. The
localization rate of MCCF and CFwLB is much better than
MOSSE. MCCEF filters are trained using multi-channel fea-
tures which are more discriminative to image quality and il-
lumination, compared to image intensities [13]. During the

2we examined different sizes of MOSSE, MCCF and CFwLB including
16 x 16,32 x 32,64 x 64 and 128 x 128. Filters with size of 64 x 64
showed higher performance and, thus, selected for this experiment.
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Figure 8. Comparing with prior correlation filters on BioID. Our
approach significantly outperformed the other CFs techniques.

evaluation, we observed that most failure cases in MCCF
and CFwLB are caused by face pose, expression and oc-
clusion. Our approach significantly outperformed MOSSE,
MCCF and CFwLB, since: (i) we use multi channel features
which are robust to image quality and illumination, (ii) we
use large size CFs which are able to handle ambiguous de-
tections, and (iii) we use small size CFs to deal with face
posing, expression and occlusion.

4. Conclusion

In this paper, we proposed cascade correlation filters for
the task of facial landmark detection. In this framework,
multiple correlation filters with different sizes are cascaded
in a way that their sizes decrease upwards to the higher lev-
els. The filter at the first level predicts the location of the
target landmark. This predication is robust to ambiguous
detections, while may suffer from smal localization errors
originated from face pose, expression and occlusion. The
position error in the first level is then refined by smaller fil-
ters at the higher levels of the cascade. The evaluation on
the LPFW and BiolD datasets demonstrated the superiority
of our approach compared to the state of the art correlation
filters and leading no-filter approaches.
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