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Abstract

This paper presents a novel video descriptor based on
substantial derivative, an important concept in fluid me-
chanics, that captures the rate of change of a fluid property
as it travels through a velocity field. Unlike standard ap-
proaches that only use temporal motion information, our
descriptor exploits the spatio-temporal characteristic of
substantial derivative. In particular, the spatial and tempo-
ral motion patterns are captured by respectively the convec-
tive and local accelerations. After estimating the convective
and local field from the optic flow, we followed the standard
bag-of-word procedure for each motion pattern separately,
and we concatenated the two resulting histograms to form
the final descriptor. We extensively evaluated the effective-
ness of the proposed method on five benchmarks, includ-
ing three standard datasets (Violence in Movies, Violence In
Crowd, and BEHAVE), and two new video-survelliance se-
quences downloaded from Youtube. Our experiments show
how the proposed approach sets the new state-of-the-art on
all benchmarks and how the structural information cap-
tured by convective acceleration is essential to detect vio-
lent episodes in crowded scenarios.

1. Introduction
With the rapid increasing of surveillance cameras, the

analysis of human behavior has attracted a lot of attention
in the computer vision community and automatic systems
to deal with the scarcity of trained personnel and the natural
limitation of human attention capabilities [11].
The biggest challenge of abnormality detection lies in the
definition of abnormality as it is strongly context depen-
dent and defined as “outlier” of a normal situation [17]. In
the context of video surveillance, examples of abnormali-
ties may be panic or violence. In some contexts, however,
people running or walking in some areas or direction of a
scene may considered abnormal events.
The most popular approach to detect abnormal behaviors

from surveillance camera footages, is to model normality
which indeed is a better defined concept. For example,
data driven approaches [13, 14, 15] exploit the abundance
normal footage to automatically learn a model of ordinary
behavior. In alternative approaches the normal behavior is
codified by means of a sociological model, being the most
famous example the social force model [9].

A diametrically different approach is to focus on abnor-
malities. Clearly, they do not represent a compact or well
defined concept. Thus, one has to restrict to a particular
case like panic [8], violence [10] or drunkiness [16]. This
restriction may lead to a better performance simply because
of the clear definition of the task. It is also important to note
that in this case i) despite of scarcity, abnormal footage may
be available and discriminative methods like support vector
machines can be applies, and ii) one can focus on the char-
acteristics of the abnormality and design a feature repre-
sentation which exhibits the discriminative patterns (mainly
in terms of motion and appearance) of normal and abnor-
mal activities. This paper takes the latter approach and fo-
cuses on the automatic classification of violence episodes in
crowded scenarios.
Violence detection in video sequences is not a novel prob-
lem. Despite recent improvements, effective solutions for
real-worlds situations are still unavailable. The first pa-
per appeared on this topic is [5] which focuses on two per-
sons fight episodes and uses motion trajectory information
of person’s limbs for classification. Besides, only focusing
on person-on-person interactions, this method requires the
segmentation of the silhouette, consequently, it is not easily
exploitable in crowded scenarios.
More robust methods [6, 18, 7] only focus on visual cues
and they are all based on the “bag of words” paradigm. The
differences between [6, 18, 7] lie in the sampling strategy,
the feature descriptor or the classifier used. For example [6]
used STIP detector and descriptor and linear support vector
machines. The approach proposed in [18] employed STIP
detection and HOG/MoSIFT descriptor along with the his-
togram intersection kernel while [7] used random sampling
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Figure 1. Overview of the proposed framework.

and optical flow magnitude. The success of each of these
method depends on the frame quality and the density of
the people involved in the violent act. Simplest descrip-
tors based on optic flow and dense sampling, however, per-
formed fairly well in all scenarios and offered quasi real-
time performance as shown in [7].

From this brief literature review emerges that the bag-
of-words paradigm preforms well being especially robust
to crowded scenarios. Moreover, the motion descriptors tai-
lored for action recognition often fail for the task of abnor-
mality detection in crowd due to the unpredictable and sud-
den changes in crowd motions, which are specific character-
istics of violences or riots. Our intuition is that a crowd de-
scriptor should capture the changes in motion more than the
motion itself which can be captured by higher order deriva-
tives.

This paper proposes a novel computational framework
for detecting abnormal events in video sequences. We
exploit the use of substantial derivative, an important
concept in fluid mechanics which encompasses spatial
and temporal information of motion changes in a single
framework [2]. In a nutshell, the substantial derivative
equation captures two important properties: i) local ac-
celeration which is velocity changes with respect to time
at a given point and occurs when the flow is unsteady
and ii) Convective acceleration which is associated with
spatial gradients of velocity in the flow field. Convective
acceleration occurs when the flow is non-uniform and its
velocity changes along is trajectory. Particularly, it is useful
to capture useful information in the crowd scenario where
size of parties participating in the violent is not uniform
and structure of motion varies drastically.
Our framework is summarized by Figure 1. First, we ex-
tract a motion description by the means of dense optic flow
(particle advection [1] can also be used). Second, following
the substantial derivative equation, we compute local
force and convective force between each consecutive pairs
of frames. Then, we followed the standard bag-of-words

paradigm for each force separately, sampling P patches and
encoding them in K centers. Finally, we concatenate the
histograms to form the final descriptor, which we defined
as total force.

The rest of the paper is organized as following. Section 2
covers the main concepts of fluid dynamics and the substan-
tial derivative equation, also discuses the parallel between
fluids and crowds. In Section 3 we show how the substan-
tial derivative equation can be employed to extract motion
primitives and finally in Section 4 we present an exhaustive
experimental section.

2. The Substantial Derivative Model
In this section, first, we introduce the main concepts be-

hind the substantial derivative in fluid dynamics, then we
discuss about its effectiveness to offer discriminating fea-
tures to distinguish violent behaviors in crowded scenarios.

2.1. The substantial Derivative in Fluid Mechanics

Substantial derivative is an important concept in fluid
mechanics which describes the change of fluid elements
by physical properties such as temperature, density, and
velocity components of flowing fluid along its trajectory
(p, t) [2]. In particular, given the velocity components
of a certain flowing particle in the x- and y-direction in
the time t, its velocity flow evolution along its trajectory
U = U(p, t) = U((x, y), t) can be described as:

DU

Dt
=

∂U
∂t

+ u
∂U
∂x

+ v
∂U
∂y

(1)

=
∂U
∂t

+ (U · O)U

Where DU

Dt is the substantial derivative and indicates the
total acceleration of the flowing particle moving along its
trajectory. The term ∂U

∂t
computes the local acceleration.



ILocal accelaration

x

y

t

U(p,t)

Convective accelaration

Figure 2. An example of local and convective accelerations. The
local acceleration measure instantaneous rate of change of each
fluid particle, while convective acceleration measures the rate of
change of the particle moving along its trajectory. Red region in-
dicates the particles are accelerated as it converge due to the struc-
tural change of the environment.

∂U

∂x
and ∂U

∂y
are, respectively, the partial derivative of veloc-

ity field U to the x and y directions. u = ∂x

∂t
and v =

∂y

∂t

are the velocity components of the particle in the x- and y-
direction respect to the time t. Finally (U · O)U computes
the convective acceleration where O ≡ ∂

∂x + ∂
∂y is the di-

vergence operator.
The local acceleration captures the change rate of ve-

locity of a certain particle respect to time and vanishes
if its flow is steady. The convective acceleration, on the
other hand, captures the change of velocity flow in the spa-
tial space and, therefore, it increases when particles move
through the region of spatially varying velocity. In this
case, one can say that the local acceleration characterizes
the particle velocity field in the temporal domain, while the
convective acceleration represents the velocity change due
to the spatial variation of the flow particle along its trajec-
tory (see Figure 2 for an example). We incorporate both
convective and local accelerations to model the pedestrians
motions dynamics in crowd scenes.

2.2. Modeling Pedestrian’s Motion Dynamics

In the following, we describe how the substantial deriva-
tive can be applied to model pedestrian motion dynamics
in a crowd. Suppose that M pedestrians with mass of
mi, i = 1, ..,M and corresponding velocities vi are in-
volved in a crowd. The total force that govern the motion of
each pedestrian is FT

i = mi · aTi , where aTi = aLi + aCv
i

is the total acceleration, aLi and aCv
i are respectively the lo-

cal and convective accelerations, and mi is the mass of the
pedestrian i. Therefore, the total force of pedestrian/particle
i can be expressed as:

FT
i = mi · aTi = FL

i + FCv
i (2)

where FL
i = mi · aLi and FCv

i = mi · aCv
i are indicated as

the local and convective forces, respectively, caused by the
local and convective accelerations.

In abnormal scenarios such as violence, in particular, an
individual shows intentional aggressive behaviors against
another one in with a sudden change of his/her velocity field

in the temporal domain (time). This crowd motion pattern
can be characterized by the local force FL . Moreover, the
motions of people involved in an abnormal crowd, e.g. vi-
olence, are convened by the crowd dynamics and mainly
are unpredicted and sudden. These motion changes show
the spatial gradients of velocity fields of people within an
abnormal crowd situation which can be represented by the
convective force FCv . By integrating the local and convec-
tive forces FL and FCv into the total force FT , we are able
to simultaneously capture the spatial structure and temporal
changes of motion fields within video sequences.

3. Estimation of local and convective forces
from videos

In this section, we detail the process of estimation of
local and convective forces from a video.
As a first step, we computed the optic flow of the video
sequences using the algorithm presented in [12] (any other
method can be employed). For each frame of the video
{It}Nt=1, the optic flow {Ut}N−1t=1 represents an estimate
of the velocity components of each pixel in the x and y
direction, e.g., Ut(x, y) = (vtx, v

t
y).

According to ( 1), the local acceleration aL is the deriva-
tive of the velocity with respect to the time. By considering
a unit time change (per frame), the local acceleration in the
x and y directions of two consecutive optical flows can be
computed by

atx = vtx − vt−1x and aty = vty − vt−1y (3)

Given the two components ax and ay , we extract the
magnitude of aL as aL =

√
(ax)2 + (ay)2, this is shown

in Figure 3.

The convective acceleration aCv captures the spatial
evolution of a particle along its trajectory. This requires to
track each particle (individuals in our case) both in the spa-
tial and temporal domain. Tracking individuals, however,
is a very challenging task especially in crowded scenarios
and likewise previous work, we resort to particle advection
[14]. Following the standard procedure, we placed an ho-
mogeneous grid of particles over the video frames and we
“advected” them according to the average optic flow over a
fixed window of time and as well as space. This is done by
a weighted average using a gaussian kernel. Using the de-
scribed process, each particle moves with the average veloc-
ity of their neighborhood, resembling the collective velocity
of a group of people in the crowd.

Given the averaged velocity components that move each
particle, e.g., {v̄tx, v̄ty}N−1t=1 , we compute their spatial deriva-
tives in the x and y directions the convective acceleration
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Figure 3. Examples of computed local and convective force fields
for a video sequence. The image on the left is the video frame,
the heat map in the middle is computed local force and on the left
is convective force underplayed over original frame. Red pixel
corresponds to the higher force values.

components

āx = (
∂v̄x
∂x

+
∂v̄y
∂y

) · v̄x and āy = (
∂v̄x
∂x

+
∂v̄y
∂y

) · v̄y (4)

Then, the magnitude of the convective acceleration is
computed by aCv =

√
(āx)2 + (āy)2. The convective

acceleration for a particular frame is shown in Figure 3; for
a better visualization we computed it using dense optic flow
(e.g., no particle advection) using the same procedure of
local acceleration. Finally, following the prior work [14],
if we assume that all individuals in a crowd have a unit
mass of mi = 1, in this case local and convective forces are
respectively equal to the local and convective accelerations,
FL = aL and FCv = aCv .

Given convective and local forces computed for each
video, we applied the standard bag-of-words method sep-
arately for local and convective forces. For each video we
randomly sampled P patches of size 5 × 5 × 5 and we
learned a visual dictionary of size K = 500 cluster centers
using K-means1. In the bag-of-word assumption each video
is encoded by a bag; to compute such bags we assigned
each of the P patch to the closest codebook and we pooled
together all the patches to generate an histogram over the K
visual words. The final descriptor is simply computed by
concatenating the histograms of local and convective forces.
With a little abuse of notation, in the experiments we will re-
fer to these histogram-descriptors computed from local and
convective force with FL and FCv and to the final descrip-
tor which we refer to as FL|FCv

4. Experimental Setup
We evaluated our approach on three standard bench-

marks namely Violence in Movies [18], Violence in Crowds
[7] and BEHAVE [3], and two new sequences downloaded
from www.youtube.com that we named Panic and Riot
in Prison. Figure 4 shows few frames for each dataset; as

1To employ k-means, we rasterized each patch in a vector of size 125
and we used euclidean distance

visible each dataset reflects different conditions in terms of
number of people involved, camera motion and view-point.

Violence In Movie consists of 200 short videos, in-
cluding 100 person-on-person fight, collected from action
movies and 100 non-fight scenarios obtained from action
recognition datasets. This is a challenging dataset, because
of the variety of scenes and imaging conditions.
Violence in Crowds [7] is a new benchmark specifically
assembled for violence classification in crowded scenarios
like stadiums, rallies or demonstrations. In total, it contains
246 video sequences: 123 normal and 123 violent.
BEHAVE dataset [3] was collected from a surveillance
camera under experimental conditions. The dataset con-
tains different group activities, including approaching,
walking together, meeting, splitting, ignoring, chasing,
following, running together, and fighting with a number
of participants varying from 2 to 7 pedestrians. Similarly
to [4], we divided the videos into two classes, considering
fighting as abnormal behaviors and the rest as normal.
Riot In Prison is a video sequence recorded with a surveil-
lance camera inside a prison. After several normal frames,
multiple person-on-person fights occur, with the number of
participants increasing gradually. Finally, security guards
intervene and the sequence ends with a normal situation.
This sequence is 3728 frames long, being 1160 the violent
frames.
Panic . Likewise the previous one, we downloaded this
sequence form youtube. It consists with 2207 frames
including 1962 frames of normal and 245 abnormal. The
video was recorded with moving camera in outdoor with
day light illumination. We considered this sequence to
evaluate the robustness of the proposed descriptor to a
different abnormality e.g., panic. It is important to note the
different nature of the datasets we considered. Violence in
movies and violence in crowds are standard benchmarks
for video-level violence classification, where violent data
is available at training time. Following the standard
bag-of-words paradigm, we described each video with a
bag and we employed SVM with Histogram intersection
kernel [19] as a classifier. Results are presented in terms of
classification accuracy.
For the remaining three sequences the goal is temporal
detection. We divided each sequence in temporally
overlapping clips of 15-frames length with 5 frames of
overlapping, we described each clip with a bag and we tried
to detect violence at clip-level. In this case abnormal data
is not available and we resorted to a standard data driven
approach: firstly we learned a latent Dirichlet allocation
model to encode the normal behavior, then we evaluated
and thresholded the likelihood of each test clip to decide
about the normality of a clip. Results are presented in
terms of area under the ROC curve (AUC). In order to



Figure 5. Comparison of average accuracy of proposed forces on VIM, and VIC using SVM with 5-fold cross validation, and AUCs of
proposed forces on Riot In Prison, Panic, and Behave sequences varying the number of sampled patches.
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Figure 4. Two normal frame and one abnormal such as fight or
panic frame (right-most column) for each of the datasets consid-
ered in our study.

compensate the effect of the random sampling, we run each
test with 10 repetitions and we reported the mean accuracy
- AUC along with the 95% confidence interval.

In the first experiment, we examined the effect of the
number of patches P used to compute the bags. We ran-
domly sampled P ∈ {100, 200, 400, 800, 1000}. Figure 5
shows how the overall performance varies with P for local
FL, convective FCv and the total force obtained by con-
catenating local and convective forces.
As expected, for all the datasets the performance improved
increasing P and considering combination of the forces. In-
terestingly one can also observe that in crowded scenarios
convective force outperformed significantly the local force;
this demonstrates the importance of structural information
to uncover underlying dynamics of crowd motion pattern,
which results in, more discriminating features.

In the second experiment, we compared our descriptors
with the state-of-the-art. As baselines we considered the

bag-of-word representation computed from the optic flow
(e.g., violent flow [7]), jerk2 and interaction force [14]. For
all our baselines, we used the very same procedure as FL

and FCv , setting P = 1000 and K = 500. Finally, as
additional comparison we reported results from other pa-
pers focusing on action recognition descriptors in violence
in movies and violence in crowds dataset.
Tables 1 - 4 report average results and the confidence inter-
vals. As immediately visible our features performed well
on each dataset and the total force, set the state-of-the art
on each dataset.
Overall, we observed that in the densely crowded situations
structural information (FCv) had a significant effect on the
performance of the classifier while in less crowded scenes,
temporal ( FL) and structural information preformed almost
equally well. Finally, in person-on-person fights, tempo-
ral information outperformed structural information, never-
theless their combination significantly improved the overall
performance of the classifier.
It is also worth to note that on BEHAVE dataset our method
only matched the result of the energy potential [4]. How-
ever, as major drawback [4] employs a support vector ma-
chine and it requires abnormal data at training time.

Table 1. Average accuracy and 95% confidence interval for the
Violence in Movies dataset using 5-fold cross-validation. † results
taken from [18].

Method Accuracy
STIP (HOF)† [18] 50.5%
MoSIFT† [18] 89.5%
Optic flow (ViF) 91.31 ± 1.06%
Interaction Force [14] 95.51± 0.79 %
Jerk [5] 95.02± 0.56%
Local force - FL 93.4 ± 1.24%
Convective force - FCv 92.16± 1.13 %
FL|FCv 96.89± 0.21%

2Jerk or Jolt is the temporal derivative of acceleration. It was the base
feature considered in [5]



Table 2. Average accuracy and 95% confidence interval for the
Violence in Crowds dataset using 5-fold cross-validation. † results
taken from [7].

Method Accuracy
HOT† [17] 82.30%
LTP† [7] 71.53 ± 0.15%
Dense Trajectories [20] 79.38± 0.14 %
Optic Flow (ViF)† [7] 81.30± 0.18 %
Interaction Force [14] 74.5 ± 0.65 %
Jerk [5] 74.18± 0.85%
Local force - FL 78.14± 0.92%
Convective force - FCv 84.03± 1.34 %
FL|FCv 85.43± 0.21%

Table 3. Average AUCs and 95% confidence interval on Riot In
Prison and Panic sequences.

Method Riot In Prison Panic
AUC AUC

Optic Flow (ViF) [7] 0.76 ± 0.052 0.89 ± 0.0136
Interaction Force [14] 0.66 ± 0.024 0.89 ± 0.0040
Jerk [5] 0.65 ± 0.036 0.90 ± 0.0095
Local force -FL 0.68 ± 0.027 0.90 ± 0.0079
Convec. force - FCv 0.79 ± 0.014 0.95 ± 0.0023
FL|FCv 0.85 ± 0.077 0.98 ± 0.0055

Table 4. Comparison of average AUCs on Behave dataset, with
95% confidence interval. † results taken from [4].

Method Classifier AUC
Energy Potential† [4] SVM 0.94
Interaction Force † [14] SVM 0.88
Optic Flow (ViF)† [7] SVM 0.81
Interaction Force [14] LDA 0.925 ± 0.008
Optic Flow (ViF) LDA 0.901 ± 0.032
Local force - FL LDA 0.933± 0.073
Convective force - FCv LDA 0.946 ± 0.032
FL|FCv LDA 0.948 ± 0.054

5. Conclusions

We introduce a novel computational framework to clas-
sify violence behaviors in various scenarios. In particular,
we addressed the ability of the method to capture the dy-
namics of pedestrians based on spatial-temporal character-
istics of substantial derivative. The results of our method,
indicated that the importance of spatial information to re-
veal complex pedestrian’s dynamics in crowded scenarios.
We demonstrated that the combination of the spatial and
temporal motion patterns mostly have a significant effect
on the performance of the classifiers. Finally, our descriptor
shows its effectiveness not only in various violent situations,
but also considering the panic situation as an abnormal sit-
uation.
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[6] F. D. M. de Souza, G. C. Chávez, E. do Valle, D. A. Araujo,
et al. Violence detection in video using spatio-temporal fea-
tures. In SIBGRAPI, pages 224–230. IEEE, 2010.

[7] T. Hassner, Y. Itcher, and O. Kliper-Gross. Violent flows:
Real-time detection of violent crowd behavior. In CVPRW,
pages 1–6. IEEE, 2012.

[8] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical
features of escape panic. Nature, 407(6803):487–490, Sept.
2000.

[9] D. Helbing and P. Molnar. Social force model for pedestrian
dynamics. Physical review E, 51(5):4282, 1995.

[10] W. Jager, R. Popping, and H. van de Sande. Clustering
and fighting in two-party crowds: Simulating the approach-
avoidance conflict. J. Artificial Societies and Social Simula-
tion, 4(3), 2001.

[11] H. U. Keval. Effective design, configuration, and use of dig-
ital CCTV. PhD thesis, University College London, 2009.

[12] C. Liu. Beyond pixels: exploring new representations and
applications for motion analysis. PhD thesis, Citeseer, 2009.

[13] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos.
Anomaly detection in crowded scenes. In CVPR, pages
1975–1981. IEEE, 2010.

[14] R. Mehran, A. Oyama, and M. Shah. Abnormal crowd be-
havior detection using social force model. In CVPR, pages
935–942. IEEE, 2009.

[15] S. Mohammadi, H. Kiani, A. Perina, and V. Murino. A com-
parison of crowd commotion measures from generative mod-
els. In CVPRw, 2015.

[16] S. C. Moore, M. Flajlik, P. L. Rosin, and D. Marshall. A
particle model of crowd behavior: Exploring the relationship
between alcohol, crowd dynamics and violence. Aggression
and Violent Behavior, 13(6):413 – 422, 2008.

[17] H. Mousavi, S. Mohammadi, A. Perina, R. Chellali, and
V. Murino. Analyzing tracklets for the detection of abnor-
mal crowd behavior. In WACV, pages 148–155. IEEE, 2015.

[18] E. B. Nievas, O. D. Suarez, G. B. Garcı́a, and R. Suk-
thankar. Violence detection in video using computer vision
techniques. pages 332–339, 2011.

[19] M. J. Swain and D. H. Ballard. Color indexing. International
journal of computer vision, 7(1):11–32, 1991.

[20] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. IJCV, 103(1):60–79, 2013.


