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ABSTRACT

In this work, we propose to employ multi-channel correlation

filters for recognizing human actions (e.g. waking, riding)

in videos. In our framework, each action sequence is rep-

resented as a multi-channel signal (frames) and the goal is

to learn a multi-channel filter for each action class that pro-

duces a set of desired outputs when correlated with training

examples. The experiments on the Weizmann and UCF sport

datasets demonstrate superior computational cost (real-time),

memory efficiency and very competitive performance of our

approach compared to the state of the arts.

Index Terms— Action recognition, Correlation filters,

Multi-channel features

1. INTRODUCTION

Human action recognition is a challenging problems in com-

puter vision which has received substantial attention over

the last few years. In general, the difference of current ap-

proaches mainly comes form the basis of the representation

used for actions. Some leading representations are learned

geometrical models of human body parts [1], space-time

pattern templates, appearance or region features, shape or

form features [2] [3], interest-point-based representations [4],

volumetric features [5], and motion/optical flow patterns [6].

Correlation filters, developed initially in the seminal work

of Hester and Casasent [7], are a method for learning a filter

in the frequency domain that returns corresponding desired

outputs when correlated with a set of training signals (e.g.

images) [7, 8, 9]. Interest in correlation filters has been

reignited in the vision world through the recent work of

Bolme et al. on Minimum Output Sum of Squared Error

(MOSSE) correlation filters [10]. This work addressed some

of the classical problems with earlier correlation filters (e.g.

over-training and poor generalization) and was extremely effi-

cient in terms of computation and memory usage. Despite the

great progress, traditional correlation filters have been rarely

applied on challenging pattern detection/recognition with

large inter-class similarities and intra-class variations, due to

their inability to handle modern descriptors (e.g. HOG [11])

for discriminative filter training. More recently, Kiani et

al. [12] introduced Multi-Channel Correlation Filters (MC-
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Fig. 1. An example of learning a multi-channel correlation

filter for walking action. The action cycle is represented by

N intensity frames and the goal is to learn an N -channel cor-

relation filter that returns a desired correlation output (a 2D

Gaussian) when correlated with the training action cycle.

CFs) to employ discriminative descriptors such as HOG for

learning multi-channel filters/detectors efficiently in the fre-

quency domain. They demonstrated competitive results of

MCCFs across a myriad of challenging detection/recognition

tasks with superior computational and memory efficiency in

comparison to spatial detectors.

The application of correlation filters has recently been

investigated for human action detection/recognition with

promising results [13] [3] [14]. The main idea of these

approaches is to represent actions using spatio-temporal vol-

umes and learn a volume correlation filter in the 3D frequency

domain that produces a peak at the origin of the action in both

spatial and temporal domain. More specifically, Rodriguez et

al. [3] has extended the Optimal Trade-off Maximum Average

Correlation Height (OT-MACH) filter to 3D MACH and pro-

posed action MACH to train 3D correlation filters for action

recognition in video sequences. The main advantage of this

approach is its closed-form solution for both scaler and vector

features which makes training process computationally very

efficient. Moreover, detection can be made extremely fast due

to the efficiency of correlation in the frequency domain.

This method, however, suffers from some major limita-

tions. First, action MACH trains a correlation filter that satis-

fies a set of criteria (e.g. maximizing the average correlation

height) over all positive training examples. It has been shown

by Ali and Lucey [13] that action filters trained using action



MACH are equivalent to the average of the action specific

examples which may suffer from poor generalization for un-

seen data and over-training for training examples. Second,

action MACH only makes use of positive examples and ig-

nores negative examples during learning process (according

to its leaning objective). This may result in training correla-

tion filters with low discrimination power which perform poor

against large inter-class similarities (confusions among walk-
ing, jogging and running in [3]). Finally, action MACH does

not specify desired values over the entire correlation outputs

of training examples, as all supervised learning techniques ba-

sically do. It was discussed in [10] that this may increase the

sensitivity to the noise or produce smooth peaks which are

difficult to be accurately recognized/detected.

In this paper, we proposed to employ multi-channel corre-

lation filters [12] for human action recognition in videos. The

core idea is that each action example with N time-ordered

frames can be considered as a multi-channel signal (with N
channels for scalar features such as image intensity and N ×
M channels for vector features like M bins HoG). Given a

set of training examples and their corresponding correlation

outputs, the goal is to learn a multi-channel action filter in the

frequency domain that produces the desired correlation out-

puts when correlated with the training examples (Figure 1).

The advantages of MCCFs for action recognition are as

follows. First, the ridge regression form of MCCFs objec-

tive in the spatial domain [12] allows us to specify the desired

values for the entire correlation outputs. This significantly re-

duces the instability against the noise and practically produces

sharp peaks for more accurate detection/recognition. Second,

the MCCFs is capable of exploiting both positive and nega-

tive examples for discriminative filter training. Finally, filter

training and testing can be performed very efficiently in the

frequency domain for both scalar and vector data.

2. CORRELATION FILTERS

The MOSSE filter [10] can be expressed as solving the fol-

lowing ridge regression problem in the spatial domain,

E(h) =
1

2

N∑

i=1

D∑

j=1

||yi(j)− h�xi[Δτ j ]||22 +
λ

2
||h||22 (1)

where yi ∈ R
D indicates the desired response for the i-

th example xi ∈ R
D and λ is a regularization term. C =

{Δτ j}Dj=1 represents the set of all possible circular shifts for

a signal of length D. Solving Equation 1 in the spatial domain

quickly becomes intractable respect to the signal length D,

as it needs to solve a D × D linear system with a cost of

O(D3 + ND2) [12]. It is well understood in signal pro-

cessing that circular convolution in the spatial domain can be

expressed as a Hadamard product in the frequency domain.

Thus, Equation 1 can be equivalently expressed as,

E(ĥ) =
1

2

N∑

i=1

||ŷi − x̂i ◦ conj(ĥ)||22 +
λ

2
||ĥ||22 (2)

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The com-

plex conjugate of ĥ is used to ensure the operation is corre-

lation not convolution. A solution to ĥ can be found with

a cost of O(ND logD) [12]. The primary cost is associated

with the DFT on the ensemble of training signals {xi}Ni=1 and

desired responses {yi}Ni=1.

3. MULTI-CHANNEL CORRELATION FILTERS

The objective of MCCFs in the spatial domain is defined

as [12],

E(h) =
1

2

N∑

i=1

D∑

j=1

||yi(j)−
K∑

k=1

h(k)Tx
(k)
i [Δτ j ]||22 +

λ

2

K∑

k=1

||h(k)||22 (3)

where x(k) and h(k) refers to the kth channel of the vector-

ized image/frame and filter respectively where K represents

the number of filters. Solving this multi-channel form in the

spatial domain is even more intractable than the single chan-

nel form with a cost of O(D3K3 + ND2K2) since one has

to solve a KD ×KD linear system.

Inspired by the efficiencies of posing single channel cor-

relation filters in the frequency domain, Equation 3 can be

expressed equivalently and more succinctly as,

E(ĥ) =
1

2

N∑

i=1

||ŷi −
K∑

k=1

diag(x̂
(k)
i )T ĥ(k)||22 +

λ

2

K∑

k=1

||ĥ(k)||22 (4)

where ĥ = [ĥ(1)T , . . . , ĥ(K)T ]T is a KD dimensional

supervector of the Fourier transforms of each channel. This

can be simplified further,

E(ĥ) =
1

2

N∑

i=1

||ŷi − X̂iĥ||22 +
λ

2
||ĥ||22 (5)

where X̂i = [diag(x̂
(1)
i )T , . . . , diag(x̂

(K)
i )T ] and the so-

lution for Equation 5 becomes,

ĥ∗ = (λI +
N∑

i=1

X̂T
i X̂i)

−1
N∑

i=1

X̂T
i ŷi (6)

The cost of solving this linear system looks no different to the

spatial domain as one still has to solve a KD×KD linear sys-

tem. Fortunately, X̂ is sparse banded and it is shown in [12]



that Equation 5 can be efficiently solved through a variable

re-ordering with smaller cost of O(DK3 +NDK2).

4. EXPERIMENTS

Dataset: We used two publicly available action datasets for

evaluation: Weizmann dataset [2], and UCF sport dataset [3].

The Weizmann dataset contains 10 actions (bending, jump-

ing, etc.) performed by 9 different subjects over a static back-

ground with slight changes of view point, scale and illumina-

tion. The UCF sport dataset is more challenging and contains

10 human actions such as diving and golf swinging filmed

under challenging situations with background clutter, light-

ning/scaling changes, and significant intra-class variations.

Features: We evaluated our method using different features:

normalized intensity, edge magnitude, temporal derivative

and HOG (5 orientation bins normalized by cell and block

sizes of 5 × 5 and 3 × 3, respectively). To compensate

for the large illumination variation, all frames were power-

normalized to have zero-mean and standard variation of 1.

Desired Correlation Outputs: For positive examples, a 2D

Gaussian with spatial variance of 2 was employed to define

the desired correlation outputs whose the peak was centered

at the center of the last frame. A 2D matrix of zero values

formed the desired correlation outputs of negative examples.

Filter Training and Testing: The annotations from [15] were

used to extract training action cycles of both datasets. The cy-

cles of each action class were carefully aligned in both spatial

and temporal domains. Given a set of positive and negative

training examples and their corresponding desired correlation

outputs, the action specific filter was trained using Equation 6.

For testing, we applied the MCCF filter trained for each class

on a test video, and the label of the filter with maximum Peak-

to-Sidelobe Ratio (PSR) [16] is assigned. To deal with scaling

in the UCF dataset, a simple pyramid approach was employed

to scan testing videos across different scales (from 0.4 to 1.5

of scaling-step 1.5) and the correlation output with maximum

PSR across the pyramid was selected for each video. For ac-

tions with whole-body translation (e.g. walking) we trained

two filters (left-to-right and right-to-left) by vertically flipping

the training examples. We performed leave-one-subject-out

cross-validation for the Weizmann dataset [2] and leave-one-

sample-out for the UCF sport dataset.

Quantitative Results: The confusion matrix of our approach

on the Weizmann dataset is illustrated in Figure 2 (top), show-

ing 100% accuracy of our method for all action classes except

jump and skip. Two confusions occurred between jump ver-

sus skip and skip versus run actions caused by their significant

motion/appearance similarities. Figure 2 (bottom) shows our

confusion matrix on the UCF sport dataset. The proposed

method achieved promising results for most of the actions.

There are more errors in skating, running and kicking. This
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Fig. 2. The confusion matrix of our method for (top) the

Weizmann, and (bottom) the UCF dataset(best viewed in pdf).

might be caused by the disadvantage of HOG to capture mo-

tion features in temporal domain which has been shown to

be more robust against large motion similarities [17]. We

can increase the robustness of MCCF against large inter-class

motion similarities using more discriminative spatio-temporal

features such as HOG3D [18] and HOG/HOF [4].

Table 1 provides a comparison of our method with those

previously reported in the literature on the Weizmann and

UCF sport datasets. For the Weizmann dataset, the highest

mean recognition rate (100%) achieved by Huang et al. [19].

This method , however, was evaluated on 9 actions (skip was

discarded) using a rich combination of optical flow and color

histogram features. In addition, feature extraction, tracking

and stabilization made Huang’s method very slow. Our ac-

curacy (97.8%) is slightly lower than this method on more

action classes with real-time recognition speed, and higher

than those reported by [20] and [17]. For the UCF dataset, our

method achieved competitive accuracy compared to the stat-

of-the-art. The best performance obtained by Cai et al. [21]

using dynamic structure preserving map (DSPM) technique.

It, however, suffers from heavy computation and sensitiv-

ity to video data redundancy. For both datasets, the action

MACH [3] obtained the lowest performance of 86.6% (Weiz-

mann) and 69.2% (UCF sport) due to sensitivity to inter-class

similarities and poor generalization. Table 2 shows the ro-

bustness of our method against different types of features.

Using these low level features can significantly reduce the

feature dimension and processing time and, consequently,

make recognition even more faster.
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Fig. 3. Qualitative results. (top) PSRs versus frame number for some selected testing videos (best viewed in color). (bottom)

Selected frames of two actions with corresponding correlation outputs. Please refer to ”Qualitative Results” for explanation.

Qualitative Results: Figure 3 (top) shows the PSRs obtained

by applying the trained action filters on some testing ex-

amples including Jumping jack, Running, Jumping side and

Jumping (from the Weizmann dataset) versus frame numbers.

Clearly, the PSRs produced by same-class filter are signifi-

cantly higher then those produced by different-class filters.

The Jumping is a failed case, where the PSRs produced by

Skip filter over the test video is slightly higher than those by

Jump filter. Interestingly, our method is able to produce high

PSR for each action cycle through the test videos. For ex-

ample, the Jumping side testing video contains two cycles of

Jumping side which are corresponded to the (two) high PSRs.

The high PSRs can be further used to accurately detect the

action occurrences across the test video. Figure 3 (bottom)

illustrates some selected frames of Jumping jack (left) and

Jumping side (right) action cycles with their corresponding

correlation outputs produced by Jumping jack and Jumping
side filters, respectively. For each frame, its frame number

and PSR value are shown. The maximum peak almost occurs

at the last frame of each action cycle (temporal domain) upon

the location of the actor (spatial domain). A high peak with

PSR more than a predefined threshold can be used to accu-

rately detect the action in both spatial and temporal domains.

Runtime Complexisty and Memory Usage: The average

time for MCCF to classify a 144×180×200 Weizmann video

was 8.15 seconds (real-time) on a Core i7, 3.40 GHz. While,

action MACH and [2] required 18.65 seconds and 30 min-

utes for the same video, respectively. Moreover, most of the

other methods in Table 1 used SVM which is shown to be

much slower than MCCF [12]. For memory usage, MCCF is

very efficient, since the amount of memory required to learn

Method Weizmann UCF sport

Huang et al. [19] 100% -

Cai et al. [21] 98.7% 90.6%

Wang et al. [17] 97.8 % 77.4%

Campos et al. [20] 96.7 % 80.0%

Rodriguez et al. [3] 86.6% 69.2%

Yeffet & Wolf [22] - 79.3%

Our method 97.8% 82.6%

Table 1. Mean accuracy of our method compared to the state-

of-the-art on the Weizmann and UCF sport datasets.

Normalized Edge Temporal HoG

intensity magnitude derivative (5 bins)

89.4% 91.2% 92.3% 97.8%

Table 2. Mean accuracy of different features (Weizmann)

an MCCF is independent of the number of training exam-

ples [12]. Whereas, the others suffer from memory overhead,

as they need to load all training examples for learning.

5. CONCLUSION

This paper proposed the application of multi-channel corre-

lation filters for human action detection. The experiments

show the competitive performance of our approach against the

state-of-the-art with superior computational efficiency. For

future work, we will explore MCCFs for action detection.
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