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Abstract

The rise of wearable devices has led to many new ways of
re-identifying an individual. Unlike static cameras, where
the views are often restricted or zoomed out and occlu-
sions are common scenarios, first-person-views (FPVs) or
ego-centric views see people closely and mostly get un-
occluded face images. In this paper, we propose a face
re-identification framework designed for a network of mul-
tiple wearable devices. This framework utilizes a global
data association method termed as Network Consistent Re-
identification (NCR) that not only helps in maintaining con-
sistency in association results across the network, but also
improves the pair-wise face re-identification accuracy. To
test the proposed pipeline, we collected a database of FPV
videos of 72 persons using multiple wearable devices (such
as Google Glasses) in a multi-storied office environment.
Experimental results indicate that NCR is able to consis-
tently achieve large performance gains when compared to
the state-of-the-art methodologies.

1. Introduction

During the past few years there has been an exponential
increase in the development of microelectronics and com-
puter systems, enabling wearable sensors and mobile de-
vices with unprecedented characteristics. To name a few,
Google Glass (GG) [14] and GoPro [15] are such devices.
These wearable devices can capture, record and analyze
video data in the areas of human identification [21, 36, 35],
which is of paramount interest within the field, especially
for surveillance or monitoring, visual assistance to elderly,
social interactions and security applications. These wear-
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Figure 1. Illustrative diagram for person re-identification us-
ing multiple first-person-view cameras. Five wearable devices
(Google Glasses, Cam 1-5), interconnected and worn by security

personnels at different levels in a multi-stored congested shopping
mall, supply uncluttered face shots of the target at any location.

able devices (such as GG) can easily be networked and they
can communicate and share information among each other.
For example, when a thief steals a product in a large mul-
tistoried shopping mall, using multiple networked cameras
(both static as well as wearable glasses) the security person-
nel can locate and catch the thief easily as compared to our
earlier days of only standalone static cameras, mostly aided
by availability of unconstrained high quality face shots at
any location in the mall (Fig. 1).

Most of the recent works focus on person re-
identification problem taking into account the color/texture
features associated mostly with the clothing of individuals
[19, 4] and sometimes their pattern of movements using
surveillance cameras. However, typically the surveillance
cameras are set up to capture wide area videos and hence the
individual targets are often few pixels in size in these cam-



era Field-of-Views (FoVs). Naturally, capturing face infor-
mation of individuals has been very challenging for these
surveillance cameras because of long distances (very small
faces) and heavily occluded (by self human pose and other
objects) regions. Hence, these traditional surveillance cam-
eras stick to the analysis of color/textures of the observed
targets, which are often non-discriminative and heavily af-
fected by clutter, occlusion and wide illumination variation
across camera FoVs. With the advancement of wearable
devices (like GG), a network of multiple first-person-view
(FPV) cameras is a good solution to alleviate the aforemen-
tioned challenges in person re-identification, as they can
supply zoomed in, uncluttered face shots of targets. Be-
sides, this network of FPVs can help in sharing information
of the captured face, get relevant feedback from the care-
givers and thereby prevent undesirable admission of the un-
known people in private premises and improve safety.

In this paper, we present a framework for performing
person re-identification using multiple wearable cameras
supplying first-person-view facial images of targets. For
this, we successfully combine the state-of-the-art holistic
discriminative feature computation methods from the FPV
face recognition literature with the robust data association
techniques reported in the person re-identification commu-
nity. To the best of our knowledge, this is the first work
to perform person re-identification using FPV face images
from a network of wearable devices. We also collect a wear-
able device re-id database where first person videos of 72
targets are captured using 4 GGs in the most realistic set up.
In the network of more than two wearable cameras, multiple
paths of association may exist between observation of the
same target that often gives rise to network inconsistency
[12]. Moreover, unlike classic person re-id problem, not all
the persons are observed in all the camera. We ensure that
the proposed pipeline can handle both of these real-world
challenges and show that it achieves high accuracy in the
collected FPV video dataset.

1.1. Related Work

Classic person re-identification. Person re-
identification using multiple FPVs or egocentric views
is a relatively new approach. In the classical person re-
identification problem, typically the camera field-of-views
are wide and whole targets are observed at a distance.
Hence, the low resolution of the targets is often the main
source of challenge in person re-identification. Existing
camera pairwise person re-identification approaches can
be roughly divided into three categories- (i) discriminative
signature based methods [2, 4, 19, 27, 18, 40], (ii) metric
learning based methods [6, 1, 38, 13], and (iii) transforma-
tion learning based methods [16, 29]. However, all of these
methods suffer from the inherent challenges in person re-id
datasets, viz., weakly discriminative features caused by

low resolution, occlusion and dependence on color/texture
features because of inability of capturing high-resolution,
discriminative facial images.

First-person-views for face identification. Face iden-
tification (FI) in unconstrained environment has remained
a dominating research area in the recent years owing to its
countless useful practical applications [32]. For humans,
face recognition (FR) is the most natural and common way
to identify and/or verify individuals. This involves recog-
nizing individuals based on what we see at a distance, e.g.,
first-person-view videos or images. Numerous researchers
have begun collecting FPV videos for FR, involving two
main tasks FI and face verification (FV) [21]. Captur-
ing faces in non-occluded conditions together with suffi-
cient face size (resolutions) have been a challenging task for
static cameras (such as in cases of surveillance and monitor-
ing). A human face not only defines identity but many more
other attributes of the owner as well, such as personality,
intension, trustworthiness, aggressiveness etc. [3]. Hence,
analyzing faces with these wearable devices in cases where
static cameras fails, is of paramount importance [23, 33].

The recent popularity of high quality wearable cameras
such as GG and GoPro have created an opportunity to revisit
the problem of capturing faces in partially occluded condi-
tion with sufficient face sizes. As compared to the static or
fixed cameras, wearable devices have advantage of captur-
ing the faces in much less non-occluded conditions. Mandal
et al. in [25] have evaluated large number of local features
with many distance measures on a wearable device database
and have shown that features like binarized statistical image
features (BSIF) and histogram of oriented gradients (HOG)
tend to outperform other local features such as local binary
patterns (LBP), local phase quantization (LPQ), local inten-
sity order pattern (LOIP) for FR task. Moreover, features
like scale invariant feature transform (SIFT) performs well
when the number of persons in the database is small. When
large number of images is available in the gallery, BSIF out-
performs all other local features [25].

Extracting the above mentioned local features from face
images are time consuming and they are of typically > 250
dimensions, making it unattractive for wearable devices that
has limited computational resources [11]. To overcome
these limitations, we use the entire face image based holistic
features extracted using the recently proposed whole space
subclass discriminant analysis (WSSDA) method for FR
[26]. It is reported to be a good performer using lower
dimensions (typical < 80 features) among many related
methodologies [22] and is also suitable for wearable de-
vices [21]. We use these robust low-dimensional features
which are reported to be highly discriminative for FPV face
videos. For comparison purpose we use the popular holis-
tic features for FR, such as the principal component analy-
sis (PCA) [34] and FisherFaces [5] and show that using the



proposed technique, we can have large improvement in the
person re-identification accuracy over the baselines.

Consistent data association. Although the high qual-
ity facial features captured using wearable devices ([21,
23]) are more discriminative in general than the typical
color/texture based features used in person re-id, they are
still camera pairwise and has to be processed by a global
data association method for generating consistent and im-
proved results at the network level. Some recent work
aims to find point correspondences in monocular image se-
quences [30] or links detections in a tracking scenario by
solving a constrained flow optimization [8], or by using
sparse appearance preserving tracklets [7]. However, all
these flow based methods need temporal order information
of observations to be known a-priori, which is not available
in most re-identification problems. Recently, in [12], the au-
thors have presented a network-consistent re-identification
(NCR) method that does not require time order informa-
tion of observations and proposes a scalable optimization
framework for yielding globally consistent association re-
sults with high accuracy. However, [12] shows experiments
on a wide area database and does not utilize face as an im-
portant cue for re-identification.

2. Person Re-identification From Multiple
First Person Views

The proposed re-identification pipeline has two distinct
parts cascaded to one another -

1. Computation of features from acquired first per-
son view images in each device and subsequent estima-
tion of feature similarity/distance scores between all pairs
of observations in each camera pair. Following the general
and widely accepted assumption in person re-identification
problem set up, we assume that the observations from the
same target in the same camera field-of-view can be clus-
tered a-priori and hence intra-camera similarity score com-
putation is not required in this problem.

2. When observations are acquired using more than two
wearable devices/cameras, network consistency is enforced
using network consistent re-identification framework. The
inter-camera similarity scores computed in step 1 are used
as inputs to this system and outputs are the final association
labels between pairs of observations across any two camera.

2.1. Normalization and Feature Extraction

We use the implementation of FR on GG proposed by
Mandal ef al. in [21] and adopted a client-server archi-
tecture, where all the FR processes are performed on the
server for less power consumption [21]. Our method uses
the OpenCV face detector [28] to find faces in the incoming
images. OpenCV eye detector [28] and integration of sketch
and graph patterns (ISG) [39] based eye detector are fused

together to locate the pair of eyes in oblique and frontal
view faces. Through the integration of both eye detectors,
high success rate of eye localization in the face images of
FPV for both frontal and non-frontal faces at various scales
(sizes) are achieved [21]. Using the detected eye coordi-
nates, faces are aligned, cropped and resized to 67 x 75
pixels. Same normalization procedure is followed as de-
scribed in [21]. Using the normalized face images, discrim-
inative face features are extracted using popular FR algo-
rithms like eigenfaces using principal component analysis
(PCA) [34] and fisherfaces using PCA+linear discriminant
analysis [31]. We also explore features from the recently
proposed within-subclass subspace learning for FR in [26].

2.1.1 Within-Subclass Subspace Learning for Face
Recognition

Traditional discriminant analysis techniques that employ
between-class and within-class scatter information, when
applied to FPV face images (with unconstrained lighting,
expression and pose conditions), may lose crucial discrimi-
nant information [20, 9, 24]. Mandal et al. utilized the sub-
class discriminant analysis [41] and ‘eigefeatures’ feature
regularization methodology [17] to alleviate the problems
of modeling large variances appearing in within-class face
images (images of an individual) and proposed the within-
subclass subspace discriminant analysis (WSSDA) in [26].
On these regularized features, total-subclass and between-
subclass scatter matrices (depending on the clusters for each
person and the number of people in the database) are com-
puted. Dimensionality reduction is performed and features
are extracted after performing discriminant evaluation in the
entire within-subclass eigenspace.

When training is complete only the gallery features and
transformation matrix are stored in the system. When more
people have to be enrolled in the database, the incom-
ing face images are transformed using the above gener-
ated training module (transformation matrix) and only the
gallery features are stored. In the recognition stage, any in-
coming face image vector is converted into a feature vec-
tor using the transformation matrix learned by WSSDA
method. The feature vector is used to perform recognition
by matching it with the gallery features. Using cosine dis-
tance measures with 1-nearest neighbor (NN) as the classi-
fier, WSSDA was shown to be the best performer in [26]
among many methods for FR on the challenging uncon-
strained YouTube face image database [37].

2.2. Estimating the Final Associations: Network
Consistent Re-identification

The problem of network inconsistency in classic person
re-identification tasks was introduced in [12] and later ex-
panded in [10]. A binary integer program for establishing



consistency in re-identification and thereby improving as-
sociation accuracy was proposed in these works and termed
as Network Consistent Re-identification (NCR) [12] or Net-
work Consistent Data Association (NCDA) [10].

We denote an observation ¢ in camera/device g as PY.
In previous section, we estimate feature similarity/distance
between pairs of observations across cameras and let cf ’;1
denote the similarity score estimated between features from
observations P? and 73;-1, observed in camera p and ¢ respec-
tively. The expected output of the NCR framework is a set
of association labels between each of these pairs of observa-
tions. Thus, if each of the observations is considered a node
in a network, clusters of nodes observed in the same cam-
era can be termed as ‘groups’ and edges can be constructed
between pairs of nodes belonging to different groups. The
goal is to estimate a label z? jq for each such edge that will
denote whether the two nodes assomated with this edge are
from the same target, i.e., ¥ ’]q = 1, if P? and 73]‘? are the
same targets and 0, otherwise.

A ‘path’ between two nodes (P/,P;) is a set of
edges that connect the nodes P} and P} without trav-
eling through a node twice. Moreover, each node on
a path belongs to a different group. A path between
P/ and P can be represented as the set of edges
e(P;PY) = {(P,Ps),(Pa, Py), -+ (P, Pj)}, where
{Pr,Pg,---PL} are the set of intermediate nodes on a path
between P}’ and P;.

2.2.1 Constraints in Data Association

Now, as there can be only one observation from the same
target (clustered a-priori if multiple observations) in one
camera FoV, an observation Pf’ in camera p may have at
most one matching observation in any other camera q. If the
same set of targets appear in all the camera FoVs, there is
an exact one-to-one match between observations across any
two camera pairs. However, in a realistic scenario, a target
may or may not appear in every camera FoV and hence,

p
ZW <1Vi=1ton,, foj <1Vj=1ton, (1)

i=1
where, z7/ € {0,1} Vi, j,p,q. This is referred to as the
‘pairwise association constraint’ in NCR. Now, pairwise as-
sociations must also be consistent over the network of cam-
eras. This set of conditions is important when there are three
or more cameras/wearable devices to capture FPV images.
The consistency condition simply states that if two nodes
(observations) are indirectly associated via nodes in other
groups, then these two nodes must also be directly associ-
ated. Therefore, given two nodes Pip and 77;»7 , it can be noted
that for consistency, a logical ‘AND’ relationship between
the association value xp '? and the set of association values

{:13Z 0 Lq, o of any possible path between the nodes
has to be mamtained. The association value between the
two nodes P! and 73](»1 has to be 1 if the association values
corresponding to all the edges of any possible path between
these two nodes are 1. Keeping the binary nature of the as-
sociation variables and the pairwise association constraint
in mind, the relationship can be compactly expressed as,

p,q 7,8
Tij = > Ty

(P ,P?)eet=) (PP, PY)

— €@ (PP, PHI+1 (2)

V paths e(z)(Pf,PJq) € (P}, P]), where |e(z)(73f,735)\
denotes the cardinality of the path e(z)(Pf) , 77;1 ), Le., the
number of edges in the 2" path. The relationship holds true
for all 7 and all 5. Now, any network containing even a large
number of wearable cameras can be exhaustively expressed
as a collection of non-overlapping triplets of cameras. For
such a triplet, the constraint in Eqn. (2) simplifies to,
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2.2.2 Re-identification as an Optimization Problem

Under the constraints expressed by Eqn. 1 and
Eqn. 3, the objective is to maximize the utility
Cc = qu 1 )i cfal. However, this utility
function is only valid for one-to-one re-identification case,
as this may reward both true positive and false positive
associations (for example, when cﬁ ’]9 € [0,1]), and hence
the optimal solution will try to assign as many positive
associations as possible across the network. This will yield
many false positive associations. One way of avoiding such
a situation in the current framework is to modify the utility

MNp,N
function as p o=t e (o xp 'd_ where there are
1,j=1 Z]

m cameras in the network and k is any value within the
range of ¢}’ Vi, j, p, g. The value of k can be learned from
the training data (see Sec. 3.3.1) so that the true-positives
are rewarded and false-positives are penalized as much
as possible. Therefore, by combining the utility function
with the constraints in Eqn. 1 and Eqn. 3, the overall
optimization problem for m wearable devices with variable
number of observations is written as,

m Np,Ngq
P»q . p,q
argmax E E el — k)i
i, p,q=1 4 5=1
i=[1,0n,] \ P<a
j:[lv"')nq]
p,q=[1,"-,m]

Mg
subject to me’j‘? <1Vi=[1,
j=1

prq<1\1j:[1,



Figure 2. (Left) Original image captured by Google Glass. (Right)
Three rows show three persons with four images each, captured
using different Google Glasses under different scenarios.
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This is a binary integer linear program (ILP) and exact
solution can be efficiently computed using methods such as
‘branch and bound’/‘branch and cut’ etc.

3. Experimental Results and Analysis
3.1. Database

We have collected a database consisting of FPV videos
of 72 people comprising of 37 male and 35 females us-
ing 4 GGs (resulting in about 7077 images). The videos
are captured using egocentric views at different levels in
a large multi-storied office environment, in corridors, lifts,
escalators, pantries, downstairs eateries, passage ways etc.
Cameras 1, 2, 3 and 4 (corresponding to the 4 wearable de-
vices) observe 52, 40, 43 and 50 persons in their respective
FoVs. Unique target IDs in each camera FoV are given in
the suppl. materials. The images collected using GG are
often blurry in nature as the person wearing the GG moves
his/her head quite frequently. Also, sometimes the images
are out of camera focus. The face and eye detectors as de-
scribed in section 2.1 serve as filters to remove images with
large motion blur or poor image quality. Some selected im-
ages from the database are shown in Fig. 2. The database,
protocol and experimental codes would be made available
to public.

3.2. Pairwise Similarity Score Generation

Using the normalized images as described in section 2.1,
we extract features applying various FR algorithms as de-
scribed in section 2.1.1. We perform the training for FR
algorithm using WSSDA on the FPV face image database
provided in [21]. We obtain the transformation matrix using
the same 42 people for training comprising of 305 images.
We limit the dimensionality of the final transformation ma-
trix to 80 features (x the dimensionality of face image vec-
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Figure 3. Estimation of optimal k£ (Eqn. 4) from an annotated
training set. k is varied over the range of pairwise similarity scores
in the training set and the overall association accuracy is computed
for each value of k. (a) shows the plot of variation of accuracy with
k for a training set of WSSDA similarity scores and (b) shows the
same for PCA based pairwise measures.

tor [21]) for all the methods, so that the final features ob-
tained are of 80 dimensions for each of the normalized face
images. We use cosine distance measures with 1-nearest
neighbor (NN) as the best match for each of the faces in a
frame to generate pairwise scores between the persons ob-
served in each of cameras FoVs.

3.3. Network Consistent Re-identification

3.3.1 Test-Train Partitions: Learning & From Training
Data

With the pairwise similarity scores generated (as explained
in the previous section), the next step is to optimally com-
bine them using the aforementioned Network Consistent
Data Association (NCR) method, which yields the final as-
sociation results. As shown in Eqn. 4, the value of & in the
objective function of the NCR integer program is specific to
the distribution of the pairwise similarity scores and hence
k has to be learned from a training set before solving for the
association labels.

Since we used three different methods, viz., PCA, Fish-
erFaces and WSSDA (see Sec. 3.2 for details) for pairwise
similarity score generation, we generate three separate sets
of consistent association results - one for each of these base-
line methods. We refer to them as (PCA + NCR), (Fisher-
Faces + NCR) and (WSSDA + NCR) throughout the rest
of the paper. For each of these three methods, we gen-
erate 10 sets of exhaustive training-testing partitions (non-
overlapping) from the collected dataset. Each set contains
24 randomly selected targets (a third of the dataset) in the
training set and the remaining 48 (two thirds of the dataset)
are used for testing. The final test results including re-
identification accuracy for each method are averaged over
these 10 test sets.

To learn k for each of the training sets, first the range
of the pairwise similarity scores is identified. As the op-
timum value of k£ must lie within this interval, we vary k
and compare the accuracy of data association against the
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Figure 4. CMC curves comparing methods (a) FisherFaces, (b)
PCA and (c) WSSDA respectively, both before and after NCR.

Table 1. Comparison of re-id performance of PCA, FisherFaces
(FF) and WSSDA with their NCR counterparts based on nAUC
values (computed using CMC values upto rank 10).

Cam PCA FF WSSDA PCA FF WSSDA
pair +NCR +NCR +NCR

1-2 0.5978 | 0.6187 0.6387 0.6179 0.6393 0.6544
1-3 0.5614 | 0.5077 0.5741 0.5743 0.5484 0.5847
1-4 0.5349 | 0.5183 0.6508 0.5521 0.5410 0.6717
2-3 0.5849 | 0.5090 0.6172 0.6185 0.5646 0.6407
2-4 0.6455 | 0.5571 0.6717 0.6513 0.5817 0.6950
3-4 0.8570 | 0.7826 0.8708 0.8763 0.8423 0.9017

ground truth on the annotated training data. The accuracy
is computed as (j; é‘;ufnﬁ’;j:';:;;tll;ﬁ:fi?g:;) and the value of k
corresponding to the maximum association accuracy is esti-
mated as the optimal of £ and fixed during testing. We show
examples of variation of training accuracy with £ in Fig. 3.
If the maximum accuracy is observed over a range of k (as
seen in Fig. 3(a) for WSSDA + NCR case), the mean k over
that range is taken as the optimum value. Fig. 3(b) shows
another similar plot for learning optimum & for the PCA +
NCR experiments.

3.3.2 Re-identification Performance Comparisons:
Before and After NCR

The re-identification performances of the individual pair-
wise methods (PCA, Fisherfaces and WSSDA) are pre-
sented and compared - both before and after enforcing the
network consistency. First, comparative evaluations are
shown in terms of recognition rate as Cumulative Match-
ing Characteristic (CMC) curves and normalized Area Un-
der Curve (nAUC) values, which are the common practice
in the literature. The CMC curve is a plot of the recognition
percentage versus the ranking score and represents the ex-
pectation of finding the correct match inside top ¢ matches.
nAUC gives an overall score of how well a re-identification
method performs irrespective of the dataset size. Please
note that, we are presenting our results in the most gener-
alized test setup where targets may not be visible in all the
camera FoVs. Hence, while estimating the CMC and nAUC
values between any pair of cameras ¢ and j, only those tar-
gets in camera ¢ are considered that are also observed in
camera j’s FoV.

Figs. 4(a), 4(b), 4(c) present the CMC curves for Fish-
erFaces, PCA and WSSDA respectively and in each plot,
comparisons in the recognition performances are shown be-
fore and after application of NCR (e.g., PCA and PCA
+ NCR in Fig. 4(b)). As we have 4 wearable devices in
our dataset, there are 6 possible camera pairs and the plots
are shown for camera pairs 1-2, 1-3, 2-3 and 2-4 for ev-
ery feature computation method (See suppl. materials for
all 6 camera pairs and 18 CMCs). Each CMC is plotted
upto rank 10. As observed, amongst the three pairwise re-
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Figure 5. Comparison of overall re-identification accuracies (com-
bining both true-positives and false-positives).

identification methods, WSSDA is superior to both PCA
and FisherFaces. Moreover, for each of the features and ev-
ery camera pair, individual pairwise methods are substan-
tially outperformed by their respective NCR counterparts.
In particular, WSSDA + NCR achieves the highest rank-1
performances across all the camera pairs, such as ~49% in
camera pairs 1-2 and 2-3 and ~80% in camera pair 3-4.
These observations are further established by the nAUC
values (computed from CMC until rank 10), as shown in Ta-
ble 1. PCA+NCR, FisherFaces+NCR and WSSDA+NCR
individually perform better than the pairwise methods PCA,
FisherFaces and WSSDA respectively with WSSDA+NCR
showing the best nAUC scores across all 6 camera pairs.

3.3.3 Overall Re-identification Accuracy by Combin-
ing Both True Positive and False Positive

A correct re-identification result in a realistic dataset such
as ours not only contains correct matches (true posi-
tives) but also contains true negatives, when a target is
only observed in a subset of cameras. Hence, the over-
all accuracy of person re-identification across any pair in
the network of wearable devices should be estimated as
(f me e WD) e compare these accuracy val-
ues obtained by NCR when applied on each of PCA, Fish-
erFaces and WSSDA similarity measures. From Fig. 5, it
can be observed that NCR on WSSDA is more accurate than
both of PCA+NCR and FisherFaces+NCR across all 6 cam-
era pairs, with the best accuracy of more than 80% observed
in camera pair 3-4.

4. Conclusions and Future Work

In this paper, we have introduced the problem of re-
identification from first-person-view (FPV) videos collected
using multiple wearable devices such as Google Glasses.
We presented a pipeline for solving this re-identification
problem by combining robust feature extraction meth-
ods for FPV face recognition with global data association

techniques for network-consistent person re-identification
(NCR). To test the proposed pipeline, we collected a large
FPV video database using 4 Google Glasses and head
mounted cameras that consists of 72 targets in a complex
office environment. Our results indicate that the NCR based
pipeline achieves high accuracy for re-identification across
all camera pairs and show substantial improvement over the
camera pairwise state-of-the-art methods. The future work
would include development of an online network consistent
face re-identification method and performing real-time on
field testing.
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